📄 ant.cc
字号:
// ant.cc/* ---------------------------------------------------------------The Artificial Ant ProblemAn example for how to use gpc++ - The Genetic Programming KernelThis program is free software; you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation; either version 1, or (at your option)any later version.This program is distributed in the hope that it will be useful, butWITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNUGeneral Public License for more details.You should have received a copy of the GNU General Public Licensealong with this program; if not, write to the Free SoftwareFoundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.Copyright 1996, 1997 Thomas WeinbrennerFor comments, improvements, additions (or even money) contact:Thomas WeinbrennerGrauensteinstr. 2635789 LaimbachGermanyE-mail: thomasw@emk.e-technik.th-darmstadt.deWWW: http://www.emk.e-technik.th-darmstadt/~thomasw--------------------------------------------------------------- */// Credits also go to Adam Fraser#include <iostream.h>#include <fstream.h>#include <strstream.h>#include <stdlib.h>#include <new.h> // For the new-handler// Include header file of genetic programming system.#include "gp.h" #include "gpconfig.h"#include "ant.h" // Factor to multiply the length with (for the fitness calculation)double lengthFactor=1/1000.0;// Define configuration parameters and the neccessary array to// read/write the configuration to a file. If you need more variables,// just add them below and insert an entry in the configArray.GPVariables cfg;char *InfoFileName="data";int energy;struct GPConfigVarInformation configArray[]={ {"PopulationSize", DATAINT, &cfg.PopulationSize}, {"NumberOfGenerations", DATAINT, &cfg.NumberOfGenerations}, {"CrossoverProbability", DATADOUBLE, &cfg.CrossoverProbability}, {"CreationrProbability", DATADOUBLE, &cfg.CreationProbability}, {"CreationType", DATAINT, &cfg.CreationType}, {"MaximumDepthForCreation", DATAINT, &cfg.MaximumDepthForCreation}, {"MaximumDepthForCrossover", DATAINT, &cfg.MaximumDepthForCrossover}, {"SelectionType", DATAINT, &cfg.SelectionType}, {"TournamentSize", DATAINT, &cfg.TournamentSize}, {"DemeticGrouping", DATAINT, &cfg.DemeticGrouping}, {"DemeSize", DATAINT, &cfg.DemeSize}, {"DemeticMigProbability", DATADOUBLE, &cfg.DemeticMigProbability}, {"SwapMutationProbability", DATADOUBLE, &cfg.SwapMutationProbability}, {"ShrinkMutationProbability", DATADOUBLE, &cfg.ShrinkMutationProbability}, {"AddBestToNewPopulation", DATAINT, &cfg.AddBestToNewPopulation}, {"SteadyState", DATAINT, &cfg.SteadyState}, {"InfoFileName", DATASTRING, &InfoFileName}, {"LengthFactor", DATADOUBLE, &lengthFactor}, {"Energy", DATAINT, &energy}, {"", DATAINT, NULL}};// The ant on the trailAnt ant;// Used for printing the trail to a file during evaluationint printAnt=0;ofstream antFile;// We have the freedom to define this function in any way we like.// This function evaluates the fitness of a genetic tree and is// recursive of course.int MyGene::evaluate (){ int result, sum; switch (node->value ()) { case LEFT: // Turn left and return 0 ant.left (); return 0; case RIGHT: // Turn right and return 0 ant.right (); return 0; case FORWARD: // Move forward result=ant.forward (); // Print the ant? if (printAnt) antFile << ant << '\n' << '\n'; // Return whether there was food return result; case IFFOODAHEAD: // If thereis a food in the direction you are facing evaluate // the first branch otherwise evolve the second branch if (ant.isFoodAhead ()) return NthMyChild(0)->evaluate (); else return NthMyChild(1)->evaluate (); case PROG2: // Evaluate both children sum=NthMyChild(0)->evaluate (); sum+=NthMyChild(1)->evaluate (); return sum; case PROG3: // Evaluate all three children sum=NthMyChild(0)->evaluate (); sum+=NthMyChild(1)->evaluate (); sum+=NthMyChild(2)->evaluate (); return sum; default: GPExitSystem ("MyGene::evaluate", "Undefined function value"); } // We should never reach this point return 0;}// Evaluate the fitness of a GP and save it into the class variable// fitness.void MyGP::evaluate (){ // Prepare ant for moving ant.reset (energy); // Print the ant? if (printAnt) antFile << ant << '\n' << '\n'; // While the ant still has energy evaluate the GP accumulating the // fitness. If, however, the whole trail is eaten, we can stop the // evaluation to speed things up, except we want to have a printout // of the ant's movements. int rawFitness=0; while ((ant.energy>0) && ((rawFitness<ant.maxFood) || printAnt)) rawFitness+=NthMyGene (0)->evaluate (); // Save standardized fitness in object. Add square times the tree // length multiplied with a factor, to go for small trees, and (most // important) to save memory. stdFitness=(ant.maxFood-rawFitness)+length()*length()*lengthFactor;}// Create function and terminal setvoid createNodeSet (GPAdfNodeSet& adfNs){ // Reserve space for the node sets. No ADF's, e.g. only one node // set. adfNs.reserveSpace (1); // Now define the function and terminal set for each ADF and place // function/terminal sets into overall ADF container GPNodeSet& ns=*new GPNodeSet (6); adfNs.put (0, ns); // Define functions/terminals and place them into the appropriate // sets. Terminals take two arguments, functions three (the third // parameter is the number of arguments the function has) ns.putNode (*new GPNode (LEFT, "LEFT")); ns.putNode (*new GPNode (RIGHT, "RIGHT")); ns.putNode (*new GPNode (FORWARD, "FORWARD")); ns.putNode (*new GPNode (IFFOODAHEAD, "IFFOODAHEAD", 2)); ns.putNode (*new GPNode (PROG2, "PROG2", 2)); ns.putNode (*new GPNode (PROG3, "PROG3", 3));}void newHandler (){ cerr << "\nFatal error: Out of memory." << endl; exit (1);}int main (){ // We set up a new-handler, because we might need a lot of memory, // and we don't know it's there. set_new_handler (newHandler); // Init GP system. GPInit (1, -1); // Read configuration file. The defaults will be overwritten by the // configuration file when read. If it doesn't exist, the defaults // will be written to the file. GPConfiguration config (cout, "ant.ini", configArray); // Open the main output file for data, trail and statistics file. // First set up names for data file. Remember we should delete the // string we got from the stream, well, just a few wasted bytes ostrstream strOutFile, strStatFile, strAntFile; strOutFile << InfoFileName << ".dat" << ends; strStatFile << InfoFileName << ".stc" << ends; strAntFile << InfoFileName << ".ant" << ends; ofstream fout (strOutFile.str()); ofstream bout (strStatFile.str()); // Print the configuration fout << cfg << endl; cout << cfg << endl; // Create the adf function/terminal set and print it out. GPAdfNodeSet adfNs; createNodeSet (adfNs); cout << adfNs << endl; fout << adfNs << endl; // Read the trail ant.readTrail ("santafe.trl"); // Create a population with this configuration cout << "Creating initial population ..." << endl; MyPopulation* pop=new MyPopulation (cfg, adfNs); pop->create (); cout << "Ok." << endl; pop->createGenerationReport (1, 0, fout, bout); // This next for statement is the actual genetic programming system // which is in essence just repeated reproduction and crossover loop // through all the generations ... MyPopulation* newPop=NULL; for (int gen=1; gen<=cfg.NumberOfGenerations; gen++) { // Create a new generation from the old one by applying the // genetic operators if (!cfg.SteadyState) newPop=new MyPopulation (cfg, adfNs); pop->generate (*newPop); // Delete the old generation and make the new the old one if (!cfg.SteadyState) { delete pop; pop=newPop; } // Create a report of this generation and how well it is doing pop->createGenerationReport (0, gen, fout, bout); } // Print trail while evaluating the best one of the last generation printAnt=1; antFile.open (strAntFile.str()); pop->NthMyGP(pop->bestOfPopulation)->evaluate(); antFile.close (); cout << "\nResults are in " << InfoFileName << ".dat, " << InfoFileName << ".ant, " << InfoFileName << ".stc." << endl; return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -