⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 manova.m

📁 GNU Octave is a high-level language, primarily intended for numerical computations. It provides a c
💻 M
字号:
## Copyright (C) 1996, 1997 Kurt Hornik#### This program is free software; you can redistribute it and/or modify## it under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 2, or (at your option)## any later version.#### This program is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with this file.  If not, write to the Free Software Foundation,## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.## usage:  manova (Y, g)#### Performs a one-way multivariate analysis of variance (MANOVA). The## goal is to test whether the p-dimensional population means of data## taken from k different groups are all equal.  All data are assumed## drawn independently from p-dimensional normal distributions with the## same covariance matrix.#### Y is the data matrix.  As usual, rows are observations and columns## are variables.  g is the vector of corresponding group labels (e.g.,## numbers from 1 to k), so that necessarily, length (g) must be the## same as rows (Y).#### The LR test statistic (Wilks' Lambda) and approximate p-values are## computed and displayed.## Three test statistics (Wilks, Hotelling-Lawley, and Pillai-Bartlett)## and corresponding approximate p-values are calculated and displayed.## (Currently NOT because the f_cdf respectively betai code is too bad.)  ## Author:  TF <Thomas.Fuereder@ci.tuwien.ac.at>## Adapted-By:  KH <Kurt.Hornik@ci.tuwien.ac.at>## Description:  One-way multivariate analysis of variance (MANOVA)function manova (Y, g)  if (nargin != 2)    usage ("manova (Y, g)");  endif  if (is_vector (Y))    error ("manova:  Y must not be a vector");  endif  [n, p] = size (Y);  if (!is_vector (g) || (length (g) != n))    error ("manova:  g must be a vector of length rows (Y)");  endif  s = sort (g);  i = find (s (2:n) > s(1:(n-1)));  k = length (i) + 1;      if (k == 1)    error ("manova:  there should be at least 2 groups");  else    group_label = s ([1, (reshape (i, 1, k - 1) + 1)]);  endif  Y = Y - ones (n, 1) * mean (Y);  SST = Y' * Y;  s = zeros (1, p);  SSB = zeros (p, p);  for i = 1 : k;    v = Y (find (g == group_label (i)), :);    s = sum (v);    SSB = SSB + s' * s / rows (v);  endfor  n_b = k - 1;      SSW = SST - SSB;  n_w = n - k;  l = real (eig (SSB / SSW));  l (l < eps) = 0;  ## Wilks' Lambda  ## =============  Lambda = prod (1 ./ (1 + l));    delta = n_w + n_b - (p + n_b + 1) / 2  df_num = p * n_b  W_pval_1 = 1 - chisquare_cdf (- delta * log (Lambda), df_num);    if (p < 3)    eta = p;  else    eta = sqrt ((p^2 * n_b^2 - 4) / (p^2 + n_b^2 - 5))  endif  df_den = delta * eta - df_num / 2 + 1    WT = exp (- log (Lambda) / eta) - 1  W_pval_2 = 1 - f_cdf (WT * df_den / df_num, df_num, df_den);  if (0)    ## Hotelling-Lawley Test    ## =====================      HL = sum (l);      theta = min (p, n_b);    u = (abs (p - n_b) - 1) / 2;     v = (n_w - p - 1) / 2;    df_num = theta * (2 * u + theta + 1);    df_den = 2 * (theta * v + 1);    HL_pval = 1 - f_cdf (HL * df_den / df_num, df_num, df_den);    ## Pillai-Bartlett    ## ===============      PB = sum (l ./ (1 + l));    df_den = theta * (2 * v + theta + 1);    PB_pval = 1 - f_cdf (PB * df_den / df_num, df_num, df_den);    printf ("\n");    printf ("One-way MANOVA Table:\n");    printf ("\n");     printf ("Test             Test Statistic      Approximate p\n");    printf ("**************************************************\n");    printf ("Wilks            %10.4f           %10.9f \n", Lambda, W_pval_1);    printf ("                                      %10.9f \n", W_pval_2);    printf ("Hotelling-Lawley %10.4f           %10.9f \n", HL, HL_pval);    printf ("Pillai-Bartlett  %10.4f           %10.9f \n", PB, PB_pval);    printf ("\n");  endif  printf ("\n");  printf ("MANOVA Results:\n");  printf ("\n");  printf ("# of groups:     %d\n", k);    printf ("# of samples:    %d\n", n);  printf ("# of variables:  %d\n", p);  printf ("\n");    printf ("Wilks' Lambda:   %5.4f\n", Lambda);  printf ("Approximate p:   %10.9f (chisquare approximation)\n", W_pval_1);  printf ("                 %10.9f (F approximation)\n", W_pval_2);  printf ("\n");  endfunction

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -