📄 manova.m
字号:
## Copyright (C) 1996, 1997 Kurt Hornik#### This program is free software; you can redistribute it and/or modify## it under the terms of the GNU General Public License as published by## the Free Software Foundation; either version 2, or (at your option)## any later version.#### This program is distributed in the hope that it will be useful, but## WITHOUT ANY WARRANTY; without even the implied warranty of## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU## General Public License for more details.#### You should have received a copy of the GNU General Public License## along with this file. If not, write to the Free Software Foundation,## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.## usage: manova (Y, g)#### Performs a one-way multivariate analysis of variance (MANOVA). The## goal is to test whether the p-dimensional population means of data## taken from k different groups are all equal. All data are assumed## drawn independently from p-dimensional normal distributions with the## same covariance matrix.#### Y is the data matrix. As usual, rows are observations and columns## are variables. g is the vector of corresponding group labels (e.g.,## numbers from 1 to k), so that necessarily, length (g) must be the## same as rows (Y).#### The LR test statistic (Wilks' Lambda) and approximate p-values are## computed and displayed.## Three test statistics (Wilks, Hotelling-Lawley, and Pillai-Bartlett)## and corresponding approximate p-values are calculated and displayed.## (Currently NOT because the f_cdf respectively betai code is too bad.) ## Author: TF <Thomas.Fuereder@ci.tuwien.ac.at>## Adapted-By: KH <Kurt.Hornik@ci.tuwien.ac.at>## Description: One-way multivariate analysis of variance (MANOVA)function manova (Y, g) if (nargin != 2) usage ("manova (Y, g)"); endif if (is_vector (Y)) error ("manova: Y must not be a vector"); endif [n, p] = size (Y); if (!is_vector (g) || (length (g) != n)) error ("manova: g must be a vector of length rows (Y)"); endif s = sort (g); i = find (s (2:n) > s(1:(n-1))); k = length (i) + 1; if (k == 1) error ("manova: there should be at least 2 groups"); else group_label = s ([1, (reshape (i, 1, k - 1) + 1)]); endif Y = Y - ones (n, 1) * mean (Y); SST = Y' * Y; s = zeros (1, p); SSB = zeros (p, p); for i = 1 : k; v = Y (find (g == group_label (i)), :); s = sum (v); SSB = SSB + s' * s / rows (v); endfor n_b = k - 1; SSW = SST - SSB; n_w = n - k; l = real (eig (SSB / SSW)); l (l < eps) = 0; ## Wilks' Lambda ## ============= Lambda = prod (1 ./ (1 + l)); delta = n_w + n_b - (p + n_b + 1) / 2 df_num = p * n_b W_pval_1 = 1 - chisquare_cdf (- delta * log (Lambda), df_num); if (p < 3) eta = p; else eta = sqrt ((p^2 * n_b^2 - 4) / (p^2 + n_b^2 - 5)) endif df_den = delta * eta - df_num / 2 + 1 WT = exp (- log (Lambda) / eta) - 1 W_pval_2 = 1 - f_cdf (WT * df_den / df_num, df_num, df_den); if (0) ## Hotelling-Lawley Test ## ===================== HL = sum (l); theta = min (p, n_b); u = (abs (p - n_b) - 1) / 2; v = (n_w - p - 1) / 2; df_num = theta * (2 * u + theta + 1); df_den = 2 * (theta * v + 1); HL_pval = 1 - f_cdf (HL * df_den / df_num, df_num, df_den); ## Pillai-Bartlett ## =============== PB = sum (l ./ (1 + l)); df_den = theta * (2 * v + theta + 1); PB_pval = 1 - f_cdf (PB * df_den / df_num, df_num, df_den); printf ("\n"); printf ("One-way MANOVA Table:\n"); printf ("\n"); printf ("Test Test Statistic Approximate p\n"); printf ("**************************************************\n"); printf ("Wilks %10.4f %10.9f \n", Lambda, W_pval_1); printf (" %10.9f \n", W_pval_2); printf ("Hotelling-Lawley %10.4f %10.9f \n", HL, HL_pval); printf ("Pillai-Bartlett %10.4f %10.9f \n", PB, PB_pval); printf ("\n"); endif printf ("\n"); printf ("MANOVA Results:\n"); printf ("\n"); printf ("# of groups: %d\n", k); printf ("# of samples: %d\n", n); printf ("# of variables: %d\n", p); printf ("\n"); printf ("Wilks' Lambda: %5.4f\n", Lambda); printf ("Approximate p: %10.9f (chisquare approximation)\n", W_pval_1); printf (" %10.9f (F approximation)\n", W_pval_2); printf ("\n"); endfunction
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -