📄 util.ml
字号:
(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *)(* $Id: util.ml,v 1.14 2003/03/16 23:43:46 stevenj Exp $ *)(* various utility functions *)open Listopen Unix (***************************************** * Integer operations *****************************************)(* fint the inverse of n modulo m *)let invmod n m = let rec loop i = if ((i * n) mod m == 1) then i else loop (i + 1) in loop 1(* Yooklid's algorithm *)let rec gcd n m = if (n > m) then gcd m n else let r = m mod n in if (r == 0) then n else gcd r n(* reduce the fraction m/n to lowest terms, modulo factors of n/n *)let lowest_terms n m = if (m mod n == 0) then (1,0) else let nn = (abs n) in let mm = m * (n / nn) in let mpos = if (mm > 0) then (mm mod nn) else (mm + (1 + (abs mm) / nn) * nn) mod nn and d = gcd nn (abs mm) in (nn / d, mpos / d)(* find a generator for the multiplicative group mod p (where p must be prime for a generator to exist!!) *)exception No_Generatorlet find_generator p = let rec period x prod = if (prod == 1) then 1 else 1 + (period x (prod * x mod p)) in let rec findgen x = if (x == 0) then raise No_Generator else if ((period x x) == (p - 1)) then x else findgen ((x + 1) mod p) in findgen 1(* raise x to a power n modulo p (requires n > 0) (in principle, negative powers would be fine, provided that x and p are relatively prime...we don't need this functionality, though) *)exception Negative_Powerlet rec pow_mod x n p = if (n == 0) then 1 else if (n < 0) then raise Negative_Power else if (n mod 2 == 0) then pow_mod (x * x mod p) (n / 2) p else x * (pow_mod x (n - 1) p) mod p(****************************************** * auxiliary functions ******************************************)let rec forall combiner a b f = if (a >= b) then [] else combiner (f a) (forall combiner (a + 1) b f)let sum_list l = fold_right (+) l 0let max_list l = fold_right (max) l (-999999)let min_list l = fold_right (min) l 999999let count pred = fold_left (fun a elem -> if (pred elem) then 1 + a else a) 0let filter pred l = fold_right (fun elem a -> if (pred elem) then elem :: a else a) l []let remove elem = filter (fun e -> (e != elem))let cons a b = a :: blet null = function [] -> true | _ -> false(* functional composition *)let (@@) f g x = f (g x)(* Hmm... CAML won't allow second-order polymorphism. Oh well.. *)(* let forall_flat = forall (@);; *)let rec forall_flat a b f = if (a >= b) then [] else (f a) @ (forall_flat (a + 1) b f)let identity x = xlet for_list l f = let rec loop = function [] -> () | s::r -> begin f s; loop r; end in loop llet rec minimize f = function [] -> None | elem :: rest -> match minimize f rest with None -> Some elem | Some x -> if (f x) >= (f elem) then Some elem else Some xlet rec find_elem condition = function [] -> None | elem :: rest -> if condition elem then Some elem else find_elem condition rest(* find x, x >= a, such that (p x) is true *)let rec suchthat a pred = if (pred a) then a else suchthat (a + 1) pred(* print an information message *)let info string = if !Magic.verbose then begin let now = Unix.times () and pid = Unix.getpid () in prerr_string ((string_of_int pid) ^ ": " ^ "at t = " ^ (string_of_float now.tms_utime) ^ " : "); prerr_string (string ^ "\n"); flush Pervasives.stderr; end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -