⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 util.ml

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 ML
字号:
(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *)(* $Id: util.ml,v 1.14 2003/03/16 23:43:46 stevenj Exp $ *)(* various utility functions *)open Listopen Unix (***************************************** * Integer operations *****************************************)(* fint the inverse of n modulo m *)let invmod n m =    let rec loop i =	if ((i * n) mod m == 1) then i	else loop (i + 1)    in	loop 1(* Yooklid's algorithm *)let rec gcd n m =    if (n > m)      then gcd m n    else      let r = m mod n      in	  if (r == 0) then n	  else gcd r n(* reduce the fraction m/n to lowest terms, modulo factors of n/n *)let lowest_terms n m =    if (m mod n == 0) then      (1,0)    else      let nn = (abs n) in let mm = m * (n / nn)      in let mpos = 	  if (mm > 0) then (mm mod nn)	  else (mm + (1 + (abs mm) / nn) * nn) mod nn      and d = gcd nn (abs mm)      in (nn / d, mpos / d)(* find a generator for the multiplicative group mod p   (where p must be prime for a generator to exist!!) *)exception No_Generatorlet find_generator p =    let rec period x prod = 	if (prod == 1) then 1	else 1 + (period x (prod * x mod p))    in let rec findgen x =	if (x == 0) then raise No_Generator	else if ((period x x) == (p - 1)) then x	else findgen ((x + 1) mod p)    in findgen 1(* raise x to a power n modulo p (requires n > 0) (in principle,   negative powers would be fine, provided that x and p are relatively   prime...we don't need this functionality, though) *)exception Negative_Powerlet rec pow_mod x n p =    if (n == 0) then 1    else if (n < 0) then raise Negative_Power    else if (n mod 2 == 0) then pow_mod (x * x mod p) (n / 2) p    else x * (pow_mod x (n - 1) p) mod p(****************************************** * auxiliary functions  ******************************************)let rec forall combiner a b f =    if (a >= b) then []    else combiner (f a) (forall combiner (a + 1) b f)let sum_list l = fold_right (+) l 0let max_list l = fold_right (max) l (-999999)let min_list l = fold_right (min) l 999999let count pred = fold_left     (fun a elem -> if (pred elem) then 1 + a else a) 0let filter pred l = fold_right     (fun elem a -> if (pred elem) then elem :: a else a) l []let remove elem = filter (fun e -> (e != elem))let cons a b = a :: blet null = function     [] -> true  | _ -> false(* functional composition *)let (@@) f g x = f (g x)(* Hmm... CAML won't allow second-order polymorphism.  Oh well.. *)(* let forall_flat = forall (@);; *)let rec forall_flat a b f =     if (a >= b) then []    else (f a) @ (forall_flat (a + 1) b f)let identity x = xlet for_list l f =   let rec loop = function      [] -> ()    | s::r -> begin f s; loop r; end  in loop llet rec minimize f = function    [] -> None  | elem :: rest ->      match minimize f rest with	None -> Some elem      |	Some x -> if (f x) >= (f elem) then Some elem else Some xlet rec find_elem condition = function    [] -> None  | elem :: rest ->      if condition elem then	Some elem      else	find_elem condition rest(* find x, x >= a, such that (p x) is true *)let rec suchthat a pred =  if (pred a) then a else suchthat (a + 1) pred(* print an information message *)let info string =  if !Magic.verbose then begin    let now = Unix.times ()     and pid = Unix.getpid () in    prerr_string ((string_of_int pid) ^ ": " ^		  "at t = " ^  (string_of_float now.tms_utime) ^ " : ");    prerr_string (string ^ "\n");    flush Pervasives.stderr;  end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -