⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 to_c.ml

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 ML
字号:
(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *)(* $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ *)let cvsid = "$Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $"open Expropen Aschedopen List(* Here, we have routines for outputting the C source code for FFTW   using the abstract syntax tree (AST), symbolic expressions,   etcetera, produced by the rest of the generator. *)let foldr_string_concat l = fold_right (^) l ""(* output the command line *)let cmdline () =  fold_right (fun a b -> a ^ " " ^ b) (Array.to_list Sys.argv) ""let paranoid_alignment_check () =  if !Magic.alignment_check then    "ASSERT_ALIGNED_DOUBLE;\n"   else    ""(*********************************** * C program structure  ***********************************)type c_decl = Decl of string * stringtype c_ast =    Asch of annotated_schedule  | For of c_ast * c_ast * c_ast * c_ast  | If of c_ast * c_ast  | Block of (c_decl list) * (c_ast list)  | Binop of string * expr * expr  | Expr_assign of expr * expr  | Stmt_assign of expr * expr  | Comma of c_ast * c_asttype c_fcn = Fcn of string * string * (c_decl list) * c_astlet real = "fftw_real"(* * traverse a a function and return a list of all expressions, * in the execution order *)let rec fcn_to_expr_list =  let rec acode_to_expr_list = function      AInstr (Assign (_, x)) -> [x]    | ASeq (a, b) -> 	(asched_to_expr_list a) @ (asched_to_expr_list b)    | _ -> []  and asched_to_expr_list (Annotate (_, _, _, _, code)) =    acode_to_expr_list code  and ast_to_expr_list = function      Asch a -> asched_to_expr_list a    | Block (_, a) -> flatten (map ast_to_expr_list a)    | For (_, _, _, body) ->  ast_to_expr_list body    | If (_, body) ->  ast_to_expr_list body    | _ -> []	    in fun (Fcn (_, _, _, body)) -> ast_to_expr_list body (***************** Extracting Operation Counts ***************)let count_stack_vars =  let rec count_acode = function    | ASeq (a, b) -> max (count_asched a) (count_asched b)    | _ -> 0  and count_asched (Annotate (_, _, decl, _, code)) =    (length decl) + (count_acode code)  and count_ast = function    | Asch a -> count_asched a    | Block (d, a) -> (length d) + (Util.max_list (map count_ast a))    | For (_, _, _, body) -> count_ast body    | If (_, body) -> count_ast body    | _ -> 0  in function (Fcn (_, _, _, body)) -> count_ast bodylet count_memory_acc f =  let rec count_var v =    if (Variable.is_input v) or (Variable.is_output v)	then 1	else 0  and count_acode = function    | AInstr (Assign (v, _)) -> count_var v    | ASeq (a, b) -> (count_asched a) + (count_asched b)    | _ -> 0  and count_asched = function      Annotate (_, _, _, _, code) -> count_acode code  and count_ast = function    | Asch a -> count_asched a    | Block (_, a) -> (Util.sum_list (map count_ast a))    | Comma (a, b) -> (count_ast a) + (count_ast b)    | For (_, _, _, body) -> count_ast body    | If (_, body) -> count_ast body    | _ -> 0  and count_acc_expr_func acc = function    | Var v -> acc + (count_var v)    | Plus a -> fold_left count_acc_expr_func acc a    | Times (a, b) -> fold_left count_acc_expr_func acc [a; b]    | Uminus a -> count_acc_expr_func acc a    | _ -> acc  in let (Fcn (typ, name, args, body)) = f  in (count_ast body) +     fold_left count_acc_expr_func 0 (fcn_to_expr_list f)let build_fma = function  | [a; Times (b, c)] -> Some (a, b, c)  | [Times (b, c); a] -> Some (a, b, c)  | [a; Uminus (Times (b, c))] -> Some (a, b, c)  | [Uminus (Times (b, c)); a] -> Some (a, b, c)  | _ -> Nonelet rec count_flops_expr_func (adds, mults, fmas) = function  | Plus [] -> (adds, mults, fmas)  | Plus a -> (match build_fma a with      None ->	let (newadds, newmults, newfmas) = 	  fold_left count_flops_expr_func (adds, mults, fmas) a	in (newadds + (length a) - 1, newmults, newfmas)    | Some (a, b, c) ->	let (newadds, newmults, newfmas) = 	  fold_left count_flops_expr_func (adds, mults, fmas) [a; b; c]	in  (newadds, newmults, newfmas + 1))  | Times (a,b) ->       let (newadds, newmults, newfmas) = 	fold_left count_flops_expr_func (adds, mults, fmas) [a; b]      in (newadds, newmults + 1, newfmas)  | Uminus a -> count_flops_expr_func (adds, mults, fmas) a  | _ -> (adds, mults, fmas)let count_flops f =     fold_left count_flops_expr_func (0, 0, 0) (fcn_to_expr_list f)let arith_complexity f =  let (a, m, fmas) = count_flops f  and v = count_stack_vars f  and mem = count_memory_acc f  in (a, m, fmas, v, mem)(* print the operation costs *)let print_cost f =  let Fcn (_, name, _, _) = f   and (a, m, fmas, v, mem) = arith_complexity f  in  "/*\n"^  " * This function contains " ^  (string_of_int (a + fmas)) ^ " FP additions, "  ^  (string_of_int (m + fmas)) ^ " FP multiplications,\n" ^  " * (or, " ^  (string_of_int a) ^ " additions, "  ^  (string_of_int m) ^ " multiplications, " ^  (string_of_int fmas) ^ " fused multiply/add),\n" ^  " * " ^ (string_of_int v) ^ " stack variables, and " ^  (string_of_int mem) ^ " memory accesses\n" ^  " */\n"(***************** Extracting Constants ***************)(* add a new key & value to a list of (key,value) pairs, where   the keys are floats and each key is unique up to almost_equal *)let add_float_key_value list_so_far k =   if exists (fun k2 -> Number.equal k k2) list_so_far then    list_so_far  else    k :: list_so_far(* find all constants in a given expression *)let rec expr_to_constants = function  | Num n -> [n]  | Plus a -> flatten (map expr_to_constants a)  | Times (a, b) -> (expr_to_constants a) @ (expr_to_constants b)  | Uminus a -> expr_to_constants a  | _ -> []let extract_constants f =  let constlist = flatten (map expr_to_constants (fcn_to_expr_list f))  in let unique_constants = fold_left add_float_key_value [] constlist  in let use_define () = foldr_string_concat      (map (function n ->	"#define " ^	(Number.unparse n) ^ " " ^ 	"FFTW_KONST(" ^ (Number.to_string n) ^ ")\n")	 unique_constants)  and use_const () = foldr_string_concat      (map (function n ->	"static const " ^ real ^ " " ^	(Number.unparse n) ^ " = " ^ 	"FFTW_KONST(" ^ (Number.to_string n) ^ ");\n")	 unique_constants)  in   if !Magic.inline_konstants then     use_define () ^ "\n\n"  else    use_const () ^ "\n\n"(******************* Unparsing the Abstract Syntax Tree *******************)(* make an unparser, given a variable unparser *)let make_c_unparser unparse_var =  let rec unparse_expr =    let rec unparse_plus = function	[] -> ""      | (Uminus a :: b) -> " - " ^ (parenthesize a) ^ (unparse_plus b)      | (a :: b) -> " + " ^ (parenthesize a) ^ (unparse_plus b)    and parenthesize x = match x with    | (Var _) -> unparse_expr x    | (Integer _) -> unparse_expr x    | (Num _) -> unparse_expr x    | _ -> "(" ^ (unparse_expr x) ^ ")"				          in function	Var x -> unparse_var x      | Num n -> Number.unparse n      | Integer n -> (string_of_int n)      | Plus [] -> "0.0 /* bug */"      | Plus [a] -> " /* bug */ " ^ (unparse_expr a)      | Plus (a::b) -> (parenthesize a) ^ (unparse_plus b)      | Times (a, b) -> (parenthesize a) ^ " * " ^ (parenthesize b)      | Uminus a -> "- " ^ (parenthesize a)  and unparse_decl = function      Decl (a, b) -> a ^ " " ^ b ^ ";\n"  and unparse_assignment (Assign (v, x)) =    (unparse_var v) ^ " = " ^ (unparse_expr x) ^ ";\n"  and unparse_annotated force_bracket =     let rec unparse_code = function	ADone -> ""      | AInstr i -> unparse_assignment i      | ASeq (a, b) -> 	  (unparse_annotated false a) ^ (unparse_annotated false b)    and declare_variables = function	[] -> ""      | v :: l when Variable.is_temporary v -> 	  (real ^ " " ^ (unparse_var v) ^ ";\n") ^ (declare_variables l)      | s :: l -> (declare_variables l)     in function	Annotate (_, _, decl, _, code) ->	  if (not force_bracket) && (Util.null decl) then 	    unparse_code code	  else "{\n" ^	    (declare_variables decl) ^	    paranoid_alignment_check() ^	    (unparse_code code) ^	    "}\n"  and unparse_ast = function      Asch a -> (unparse_annotated true a)    | For (a, b, c, d) ->	"for (" ^	unparse_ast a ^ "; " ^ unparse_ast b ^ "; " ^ unparse_ast c	^ ")" ^ unparse_ast d    | If (a, d) ->	"if (" ^	unparse_ast a 	^ ")" ^ unparse_ast d    | Block (d, s) ->	if (s == []) then ""	else 	  "{\n"                                      ^           foldr_string_concat (map unparse_decl d)   ^           foldr_string_concat (map unparse_ast s)    ^          "}\n"          | Binop (op, a, b) -> (unparse_expr a) ^ op ^ (unparse_expr b)    | Expr_assign (a, b) -> (unparse_expr a) ^ " = " ^ (unparse_expr b)    | Stmt_assign (a, b) -> (unparse_expr a) ^ " = " ^ (unparse_expr b) ^ ";\n"    | Comma (a, b) -> (unparse_ast a) ^ ", " ^ (unparse_ast b)  and unparse_function = function    Fcn (typ, name, args, body) ->      let rec unparse_args = function	  [Decl (a, b)] -> a ^ " " ^ b 	| (Decl (a, b)) :: s -> a ^ " " ^ b  ^ ", "	    ^  unparse_args s	| [] -> ""      in       (typ ^ " " ^ name ^ "(" ^ unparse_args args ^ ")\n" ^       unparse_ast body)  in function tree ->    "/* Generated by: " ^ (cmdline ()) ^ "*/\n\n" ^    (print_cost tree) ^    (extract_constants tree) ^    "/*\n" ^    " * Generator Id's : \n" ^    " * " ^ Exprdag.cvsid ^ "\n" ^    " * " ^ Fft.cvsid ^ "\n" ^    " * " ^ cvsid ^ "\n" ^    " */\n\n" ^    (unparse_function tree)		

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -