⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex.ml

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 ML
字号:
(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *)(* $Id: complex.ml,v 1.23 2003/03/16 23:43:46 stevenj Exp $ *)(* abstraction layer for complex operations *)(* type of complex expressions *)open Exprdagopen Exprdag.LittleSimplifiertype expr = CE of node * nodelet two = CE (makeNum Number.two, makeNum Number.zero)let one = CE (makeNum Number.one, makeNum Number.zero)let zero = CE (makeNum Number.zero, makeNum Number.zero)let inverse_int n = CE (makeNum (Number.div Number.one 			       (Number.of_int n)),			makeNum Number.zero)let times_4_2 (CE (a, b)) (CE (c, d)) =   CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],      makePlus [makeTimes (a, d); makeTimes (b, c)])let simple = function    Num a -> Number.is_zero a or Number.is_one a or Number.is_mone a  | _ -> falselet rec times_3_3 (CE (a, b)) (CE (c, d)) =   (* refuse to do the 3-3 algorithm if a=1, i, -i, -1, etc. *)  if simple a or simple b or simple c or simple d then     times_4_2 (CE (c, d)) (CE (a, b))  else match a with    Num _ ->      let amb = makePlus [a; makeUminus b]      and cpd = makePlus [c; d]      and apb = makePlus [a; b]      in let apbc = makeTimes (apb, c)      and bcpd = makeTimes (b, cpd)      and ambd = makeTimes (amb, d)      in CE (makePlus [apbc; makeUminus bcpd],	     makePlus [bcpd; ambd])  | _ -> match c with           Num _ -> times_3_3 (CE (c, d)) (CE (a, b))         | _     -> times_4_2 (CE (a, b)) (CE (c, d))let times a b =   if !Magic.times_3_3 then    times_3_3 a b  else    times_4_2 a blet uminus (CE (a, b)) =  CE (makeUminus a, makeUminus b)(* hack to swap real<->imaginary.  Used by hc2hc codelets *)let swap_re_im (CE (r, i)) = CE (i, r)(* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)let exp n i =  let (c, s) = Number.cexp n i  in CE (makeNum c, makeNum s)    (* complex sum *)let plus a =  let rec unzip_complex = function      [] -> ([], [])    | ((CE (a, b)) :: s) ->        let (r,i) = unzip_complex s	in	(a::r), (b::i) in  let (c, d) = unzip_complex a in  CE (makePlus c, makePlus d)(* extract real/imaginary *)let real (CE (a, b)) = CE (a, makeNum Number.zero)let imag (CE (a, b)) = CE (makeNum Number.zero, b)let conj (CE (a, b)) = CE (a, makeUminus b)    let abs_sqr (CE (a, b)) = makePlus [makeTimes (a, a);                                 makeTimes (b, b)](*  * special cases for complex numbers w where |w| = 1   *)(* (a + bi)^2 = (2a^2 - 1) + 2abi *)let wsquare (CE (a, b)) =  let twoa = makeTimes (makeNum Number.two, a)  in let twoasq = makeTimes (twoa, a)  and twoab = makeTimes (twoa, b) in  CE (makePlus [twoasq; makeUminus (makeNum Number.one)], twoab)(*  * compute w^n given w^{n-1}, w^{n-2}, and w, using the identity   *   * w^n + w^{n-2} = w^{n-1} (w + w^{-1}) = 2 w^{n-1} Re(w)  *)let wthree (CE (an1, bn1)) wn2 (CE (a, b)) =  let twoa = makeTimes (makeNum Number.two, a)  in let twoa_wn1 = CE (makeTimes (twoa, an1), 			makeTimes (twoa, bn1))  in plus [twoa_wn1; (uminus wn2)](* abstraction of sum_{i=0}^{n-1} *)(* let sigma a b f = plus (Util.forall :: a b f) *)let sigma a b f =  let rec loop a =     if (a >= b) then []    else (f a) :: (loop (a + 1))  in plus (loop a)(* complex variables *)type variable = CV of Variable.variable * Variable.variablelet load_var (CV (vr, vi)) =   CE (Load vr, Load vi)let store_var (CV (vr, vi)) (CE (xr, xi))  =   [Store (vr, xr); Store (vi, xi)]let store_real (CV (vr, vi)) (CE (xr, xi))  =   [Store (vr, xr)]let store_imag (CV (vr, vi)) (CE (xr, xi))  =   [Store (vi, xi)]let access what k =  let (r, i) = what k  in CV (r, i)let access_input = access Variable.access_inputlet access_output = access Variable.access_outputlet access_twiddle = access Variable.access_twiddle

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -