⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 symmetry.ml

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 ML
字号:
(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *)(* $Id: symmetry.ml,v 1.15 2003/03/16 23:43:46 stevenj Exp $ *)(* various kinds of symmetries *)open Complex open Util(* * symmetries are encoded as symmetries of the *input*.  A symmetry * determines  * 1) the symmetry of the output (osym) * 2) symmetries at intermediate stages of divide and conquer or Rader *    (isym1 and isym2) *)type symmetry = {  apply: int -> (int -> Complex.expr) -> int -> Complex.expr;  store: int -> (int -> Complex.expr) -> int -> Exprdag.node list;  osym: symmetry;  isym1: symmetry;  isym2: symmetry}(* no symmetry *)let rec no_sym = {  isym1 = no_sym;   isym2 = no_sym;  osym = no_sym;  store = (fun _ f i -> store_var (access_output i) (f i));  apply = fun _ f -> f}(* the crazy symmetry of the intermediate elements of    the hc2hc_forward transform. *)and middle_hc2hc_forward_sym = {  osym = middle_hc2hc_forward_sym;  isym1 = no_sym;  isym2 = no_sym;  store = (fun n f i ->     if (i < n - i) then      store_var (access_output i) (f i)    else      store_var (access_output i) (swap_re_im (conj (f i))));  apply = fun _ f -> f}(* the crazy symmetry of the intermediate elements of    the hc2hc_backward transform. *)and middle_hc2hc_backward_sym = {  osym = no_sym;  isym1 = no_sym;  isym2 = no_sym;  store = (fun _ -> failwith "middle_hc2hc_backward_sym");  apply = fun n f i ->    if (i < n - i) then      (f i)    else      conj (swap_re_im (f i))}(* the crazy symmetry of the n/2-th element of    the hc2hc_forward transform. *)and final_hc2hc_forward_sym = {  osym = final_hc2hc_forward_output_sym;  isym1 = real_sym;  isym2 = no_sym;  store = (fun n f i ->    if (2 * i < n) then store_real (access_output i) (f i)    else []);  apply = fun n f i ->    if (2 * i < n) then real (f i)    else uminus (real (f (i - n/2)))} and final_hc2hc_backward_sym = {  osym = final_hc2hc_forward_sym;  isym1 = no_sym;  isym2 = no_sym;  store = (fun _ -> failwith "final_hc2hc_backward_sym");  apply = (fun n f i ->     if (i mod 2 == 0) then zero    else (      let i' = (i - 1) / 2      and n' = n / 2       in      if (2 * i' < n' - 1) then (f i')      else if (2 * i' == n' - 1) then 	real (f i')      else conj (f (n' - 1 - i'))    ))}and final_hc2hc_forward_output_sym = {  osym = final_hc2hc_forward_sym;  isym1 = no_sym;  isym2 = no_sym;  store = (fun n f i ->     if (i mod 2 == 0) then []    else (      let i' = (i - 1) / 2      and n' = n / 2       in      if (2 * i' < n' - 1) then 	store_var (access_output i') (times (inverse_int 2) (f i))      else if (2 * i' == n' - 1) then 	store_real (access_output i') (times (inverse_int 2) (f i))      else []    ));  apply = fun _ f -> f}(* real input data *)and real_sym = {  osym = hermitian_sym;  isym1 = real_sym;  isym2 = no_sym;  store = (fun _ f i -> store_real (access_output i) (f i));  apply = fun _ f -> real @@ f}(* imaginary input data *)and imag_sym = {  osym = antihermitian_sym;  isym1 = imag_sym;  isym2 = no_sym;  store = (fun _ f i -> store_imag (access_output i) (f i));  apply = fun _ f -> imag @@ f}(* real, even input data *)and realeven_sym = {  osym = realeven_sym;  isym1 = real_sym;  isym2 = hermitian_sym;  store = (fun n f i ->     if (i <= n - i) then store_real (access_output i) (f i)    else []);  apply = fun n f i ->     if (i <= n - i) then real (f i)    else real (f (n - i))}(* imaginary, even input data *)and imageven_sym = {  osym = imageven_sym;  isym1 = imag_sym;  isym2 = antihermitian_sym;  store = (fun n f i ->     if (i <= n - i) then store_imag (access_output i) (f i)    else []);  apply = fun n f i ->     if (i <= n - i) then imag (f i)    else imag (f (n - i))}(* real, odd input data *)and realodd_sym = {  osym = imagodd_sym;  isym1 = real_sym;  isym2 = antihermitian_sym;  store = (fun n f i ->     if ((i > 0) && (i < n - i)) then store_real (access_output i) (f i)    else []);  apply = fun n f i ->    if (i == 0) then zero    else if (i < n - i)  then real (f i)    else if (i > n - i) then real (uminus (f (n - i)))    else zero}(* imaginary, odd input data *)and imagodd_sym = {  osym = realodd_sym;  isym1 = imag_sym;  isym2 = hermitian_sym;  store = (fun n f i ->     if ((i > 0) && (i < n - i)) then store_imag (access_output i) (f i)    else []);  apply = fun n f i ->    if (i == 0) then zero    else if (i < n - i)  then imag (f i)    else if (i > n - i) then imag (uminus (f (n - i)))    else zero}(* halfcomplex/anti-hermitian input data *)and antihermitian_sym = {  osym = imag_sym;  isym1 = no_sym;  isym2 = antihermitian_sym;  apply = (fun n f i ->    if (i = 0) then imag (f 0)    else if (i < n - i)  then (f i)    else if (i > n - i)  then uminus (conj (f (n - i)))    else imag (f i));  store = fun n f i ->    if (i = 0) then store_imag (access_output i) (f i)    else if (i < n - i) then store_var (access_output i) (f i)    else if (i == n - i) then store_imag (access_output i) (f i)    else []} (* halfcomplex/hermitian input data *)and hermitian_sym = {  osym = real_sym;  isym1 = no_sym;  isym2 = hermitian_sym;  apply = (fun n f i ->    if (i = 0) then real (f 0)    else if (i < n - i)  then (f i)    else if (i > n - i)  then conj (f (n - i))    else real (f i));  store = fun n f i ->    if (i = 0) then store_real (access_output i) (f i)    else if (i < n - i) then store_var (access_output i) (f i)    else if (i == n - i) then store_real (access_output i) (f i)    else []} (* symmetric input data, used by rader *)and symmetric_sym = {  osym = symmetric_sym;  isym1 = no_sym;  isym2 = no_sym;  apply = (fun n f i ->    if (i < n - i) then (f i)    else (f (n - i)));  store = (fun _ -> failwith "symmetric_sym")} (* anti-symmetric input data, used by rader *)and anti_symmetric_sym = {  osym = anti_symmetric_sym;  isym1 = no_sym;  isym2 = no_sym;  apply = (fun n f i ->    if (i == 0) then zero    else if (i < n - i)  then (f i)    else if (i > n - i) then uminus (f (n - i))    else zero);  store = (fun _ -> failwith "anti_symmetric_sym")} (* real, even-2 input data (even about n=-1/2, not n=0). *)and realeven2_input_sym = {  osym = realeven2_output_sym;  isym1 = real_sym;  isym2 = hermitian_sym;  store = (fun _ -> failwith "realeven2_input_sym");  apply = fun n f i ->     if ((i mod 2) == 0) then zero    else if (i <= n - i) then      real (f ((i - 1) / 2))    else      real (f (n/2 - 1 - (i - 1)/2))}(* real, even-2 output data (even about n=-1/2, not n=0).  We have multiplied   output[k] by omega^(k/2); the result is real, odd, and anti-periodic. *)and realeven2_output_sym = {  osym = no_sym;  isym1 = no_sym;  isym2 = no_sym;  store = (fun n f i ->     if (4 * i < n) then store_real (access_output i) (f i)    else []);  apply = (fun n f i -> f i)}(* real, odd-2 input data (odd about n=-1/2, not n=0). *)and realodd2_input_sym = {  osym = realodd2_output_sym;  isym1 = real_sym;  isym2 = antihermitian_sym;  store = (fun _ -> failwith "realodd2_input_sym");  apply = fun n f i ->     if ((i mod 2) == 0) then zero    else if (i < n - i) then      real (f ((i - 1) / 2))    else if (i == n - i) then zero    else uminus (real (f (n/2 - 1 - (i - 1)/2)))}(* real, odd-2 output data (odd about n=-1/2, not n=0).  We have multiplied   output[k] by omega^(k/2); the result is imaginary, even,   and anti-periodic. *)and realodd2_output_sym = {  osym = no_sym;  isym1 = no_sym;  isym2 = no_sym;  store = (fun n f i ->     if (i > 0 && 4 * i <= n) then store_imag (access_output i) (f i)    else []);  apply = (fun n f i -> f i)}(* mp3 mdct symmetries *)and mp3mdct_input_sym = {  osym = mp3mdct_output_sym;  isym1 = real_sym;  isym2 = hermitian_sym;  store = (fun _ -> failwith "mp3mdct_input_sym");  apply = fun n f i ->     let coef = times two (inverse_int (n / 4)) in    (* this is the `normal' mp3 mdcd window.  I have not       implemented the `start' and `stop' windows yet *)    let w i =      let s = swap_re_im (imag (exp n (2 * i + 1))) in      times (times coef s) (f (i mod (n / 4)))    in    let g i =       if (i mod 2) == 0      then zero      else w (((i - 1 - n / 8) / 2 + n) mod (n / 2))    in    if (i <= n - i) then g i else g (n - i)}and mp3mdct_output_sym = {  osym = no_sym;  isym1 = no_sym;  isym2 = no_sym;  store = (fun n f i ->     if ((i mod 2) == 1 && 4 * i < n) then       store_real (access_output ((i-1) / 2)) (f i)    else []);  apply = (fun n f i -> f i)}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -