⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 schedule.ml

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 ML
字号:
(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *)(* $Id: schedule.ml,v 1.17 2003/03/16 23:43:46 stevenj Exp $ *)(* This file contains the instruction scheduler, which finds an   efficient ordering for a given list of instructions.   The scheduler analyzes the DAG (Directed, Acyclic Graph) formed by   the instruction dependencies, and recursively partitions it.  The   resulting schedule data structure expresses a "good" ordering   and structure for the computation.   The scheduler makes use of utilties in Dag and other packages to   manipulate the Dag and the instruction list. *)open Dag(************************************************* *               Dag scheduler *************************************************)let to_assignment node = (Expr.Assign (node.assigned, node.expression))let makedag l = Dag.makedag     (List.map (function Expr.Assign (v, x) -> (v, x)) l)let return x = xlet has_color c n = (n.color = c)let set_color c n = (n.color <- c)let has_either_color c1 c2 n = (n.color = c1 || n.color = c2)let infinity = 100000 let cc dag inputs =  begin    Dag.for_all dag (fun node ->       node.label <- infinity);        (match inputs with       a :: _ -> bfs dag a 0    | _ -> failwith "connected");    return      ((List.map to_assignment (Util.filter (fun n -> n.label < infinity)				  (Dag.to_list dag))),       (List.map to_assignment (Util.filter (fun n -> n.label == infinity) 				  (Dag.to_list dag))))  endlet rec connected_components alist =  let dag = makedag alist in  let inputs =     Util.filter (fun node -> Util.null node.predecessors)       (Dag.to_list dag) in  match cc dag inputs with    (a, []) -> [a]  | (a, b) -> a :: connected_components blet loads_twiddle node =  match (node.input_variables, node.predecessors) with    ([x], []) -> Variable.is_twiddle x  | _ -> falselet partition alist =  let dag = makedag alist in  let dag' = Dag.to_list dag in  let inputs =     Util.filter (fun node -> Util.null node.predecessors) dag'  and outputs =     Util.filter (fun node -> Util.null node.successors) dag'  and special_inputs =  Util.filter loads_twiddle dag' in  begin    Dag.for_all dag (fun node ->       begin      	node.color <- BLACK;      end);    Util.for_list inputs (set_color RED);    (* The special inputs are input that read a twiddle factor.  They       can end up either in the blue or in the red part.  If a red       node needs a special input, the special input becomes red.  If       all successors of a special input are blue, it becomes blue.       Outputs are always blue.       As a consequence, however, the final partition might be       composed only of blue nodes (which is incorrect).  In this case       we manually reset all inputs (whether special or not) to be red. *)    Util.for_list special_inputs (set_color YELLOW);    Util.for_list outputs (set_color BLUE);    let rec loopi donep =       match (Util.filter	       (fun node -> (has_color BLACK node) &&		 List.for_all (has_either_color RED YELLOW) node.predecessors)	       dag') with	[] -> if (donep) then () else loopo true      |	i -> 	  begin	    Util.for_list i (fun node -> 	      begin      		set_color RED node;		Util.for_list node.predecessors (set_color RED);	      end);	    loopo false; 	  end    and loopo donep =      match (Util.filter	       (fun node -> (has_either_color BLACK YELLOW node) &&		 List.for_all (has_color BLUE) node.successors)	       dag') with	[] -> if (donep) then () else loopi true      |	o ->	  begin	    Util.for_list o (set_color BLUE);	    loopi false; 	  end    (* among the magic parameters, this is the most obscure *)    in if !Magic.loopo then       loopo false    else      loopi false;    (* fix the partition if it is incorrect *)    if not (List.exists (has_color RED) dag') then 	Util.for_list inputs (set_color RED);        return      ((List.map to_assignment (Util.filter (has_color RED) dag')),       (List.map to_assignment (Util.filter (has_color BLUE) dag')))  endtype schedule =     Done  | Instr of Expr.assignment  | Seq of (schedule * schedule)  | Par of schedule listlet schedule =  let rec schedule_alist = function      [] -> Done    | [a] -> Instr a    | alist -> 	match connected_components alist with	  ([a]) -> schedule_connected a	| l -> Par (List.map schedule_alist l)  and schedule_connected alist =     match partition alist with    | (a, b) -> Seq (schedule_alist a, schedule_alist b)  in schedule_alist

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -