⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ftwi_10.c

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 C
字号:
/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Mon Mar 24 02:08:33 EST 2003 */#include "fftw-int.h"#include "fftw.h"/* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -twiddleinv 10 *//* * This function contains 102 FP additions, 60 FP multiplications, * (or, 72 additions, 30 multiplications, 30 fused multiply/add), * 42 stack variables, and 40 memory accesses */static const fftw_real K951056516 =FFTW_KONST(+0.951056516295153572116439333379382143405698634);static const fftw_real K587785252 =FFTW_KONST(+0.587785252292473129168705954639072768597652438);static const fftw_real K250000000 =FFTW_KONST(+0.250000000000000000000000000000000000000000000);static const fftw_real K559016994 =FFTW_KONST(+0.559016994374947424102293417182819058860154590);/* * Generator Id's :  * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $ * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ */void fftwi_twiddle_10(fftw_complex *A, const fftw_complex *W, int iostride,		      int m, int dist){     int i;     fftw_complex *inout;     inout = A;     for (i = m; i > 0; i = i - 1, inout = inout + dist, W = W + 9) {	  fftw_real tmp7;	  fftw_real tmp55;	  fftw_real tmp100;	  fftw_real tmp115;	  fftw_real tmp41;	  fftw_real tmp52;	  fftw_real tmp53;	  fftw_real tmp59;	  fftw_real tmp60;	  fftw_real tmp61;	  fftw_real tmp75;	  fftw_real tmp78;	  fftw_real tmp113;	  fftw_real tmp89;	  fftw_real tmp90;	  fftw_real tmp96;	  fftw_real tmp18;	  fftw_real tmp29;	  fftw_real tmp30;	  fftw_real tmp56;	  fftw_real tmp57;	  fftw_real tmp58;	  fftw_real tmp68;	  fftw_real tmp71;	  fftw_real tmp112;	  fftw_real tmp86;	  fftw_real tmp87;	  fftw_real tmp95;	  ASSERT_ALIGNED_DOUBLE;	  {	       fftw_real tmp1;	       fftw_real tmp99;	       fftw_real tmp6;	       fftw_real tmp98;	       ASSERT_ALIGNED_DOUBLE;	       tmp1 = c_re(inout[0]);	       tmp99 = c_im(inout[0]);	       {		    fftw_real tmp3;		    fftw_real tmp5;		    fftw_real tmp2;		    fftw_real tmp4;		    ASSERT_ALIGNED_DOUBLE;		    tmp3 = c_re(inout[5 * iostride]);		    tmp5 = c_im(inout[5 * iostride]);		    tmp2 = c_re(W[4]);		    tmp4 = c_im(W[4]);		    tmp6 = (tmp2 * tmp3) + (tmp4 * tmp5);		    tmp98 = (tmp2 * tmp5) - (tmp4 * tmp3);	       }	       tmp7 = tmp1 - tmp6;	       tmp55 = tmp1 + tmp6;	       tmp100 = tmp98 + tmp99;	       tmp115 = tmp99 - tmp98;	  }	  {	       fftw_real tmp35;	       fftw_real tmp73;	       fftw_real tmp51;	       fftw_real tmp77;	       fftw_real tmp40;	       fftw_real tmp74;	       fftw_real tmp46;	       fftw_real tmp76;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp32;		    fftw_real tmp34;		    fftw_real tmp31;		    fftw_real tmp33;		    ASSERT_ALIGNED_DOUBLE;		    tmp32 = c_re(inout[4 * iostride]);		    tmp34 = c_im(inout[4 * iostride]);		    tmp31 = c_re(W[3]);		    tmp33 = c_im(W[3]);		    tmp35 = (tmp31 * tmp32) + (tmp33 * tmp34);		    tmp73 = (tmp31 * tmp34) - (tmp33 * tmp32);	       }	       {		    fftw_real tmp48;		    fftw_real tmp50;		    fftw_real tmp47;		    fftw_real tmp49;		    ASSERT_ALIGNED_DOUBLE;		    tmp48 = c_re(inout[iostride]);		    tmp50 = c_im(inout[iostride]);		    tmp47 = c_re(W[0]);		    tmp49 = c_im(W[0]);		    tmp51 = (tmp47 * tmp48) + (tmp49 * tmp50);		    tmp77 = (tmp47 * tmp50) - (tmp49 * tmp48);	       }	       {		    fftw_real tmp37;		    fftw_real tmp39;		    fftw_real tmp36;		    fftw_real tmp38;		    ASSERT_ALIGNED_DOUBLE;		    tmp37 = c_re(inout[9 * iostride]);		    tmp39 = c_im(inout[9 * iostride]);		    tmp36 = c_re(W[8]);		    tmp38 = c_im(W[8]);		    tmp40 = (tmp36 * tmp37) + (tmp38 * tmp39);		    tmp74 = (tmp36 * tmp39) - (tmp38 * tmp37);	       }	       {		    fftw_real tmp43;		    fftw_real tmp45;		    fftw_real tmp42;		    fftw_real tmp44;		    ASSERT_ALIGNED_DOUBLE;		    tmp43 = c_re(inout[6 * iostride]);		    tmp45 = c_im(inout[6 * iostride]);		    tmp42 = c_re(W[5]);		    tmp44 = c_im(W[5]);		    tmp46 = (tmp42 * tmp43) + (tmp44 * tmp45);		    tmp76 = (tmp42 * tmp45) - (tmp44 * tmp43);	       }	       tmp41 = tmp35 - tmp40;	       tmp52 = tmp46 - tmp51;	       tmp53 = tmp41 + tmp52;	       tmp59 = tmp35 + tmp40;	       tmp60 = tmp46 + tmp51;	       tmp61 = tmp59 + tmp60;	       tmp75 = tmp73 - tmp74;	       tmp78 = tmp76 - tmp77;	       tmp113 = tmp75 + tmp78;	       tmp89 = tmp73 + tmp74;	       tmp90 = tmp76 + tmp77;	       tmp96 = tmp89 + tmp90;	  }	  {	       fftw_real tmp12;	       fftw_real tmp66;	       fftw_real tmp28;	       fftw_real tmp70;	       fftw_real tmp17;	       fftw_real tmp67;	       fftw_real tmp23;	       fftw_real tmp69;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp9;		    fftw_real tmp11;		    fftw_real tmp8;		    fftw_real tmp10;		    ASSERT_ALIGNED_DOUBLE;		    tmp9 = c_re(inout[2 * iostride]);		    tmp11 = c_im(inout[2 * iostride]);		    tmp8 = c_re(W[1]);		    tmp10 = c_im(W[1]);		    tmp12 = (tmp8 * tmp9) + (tmp10 * tmp11);		    tmp66 = (tmp8 * tmp11) - (tmp10 * tmp9);	       }	       {		    fftw_real tmp25;		    fftw_real tmp27;		    fftw_real tmp24;		    fftw_real tmp26;		    ASSERT_ALIGNED_DOUBLE;		    tmp25 = c_re(inout[3 * iostride]);		    tmp27 = c_im(inout[3 * iostride]);		    tmp24 = c_re(W[2]);		    tmp26 = c_im(W[2]);		    tmp28 = (tmp24 * tmp25) + (tmp26 * tmp27);		    tmp70 = (tmp24 * tmp27) - (tmp26 * tmp25);	       }	       {		    fftw_real tmp14;		    fftw_real tmp16;		    fftw_real tmp13;		    fftw_real tmp15;		    ASSERT_ALIGNED_DOUBLE;		    tmp14 = c_re(inout[7 * iostride]);		    tmp16 = c_im(inout[7 * iostride]);		    tmp13 = c_re(W[6]);		    tmp15 = c_im(W[6]);		    tmp17 = (tmp13 * tmp14) + (tmp15 * tmp16);		    tmp67 = (tmp13 * tmp16) - (tmp15 * tmp14);	       }	       {		    fftw_real tmp20;		    fftw_real tmp22;		    fftw_real tmp19;		    fftw_real tmp21;		    ASSERT_ALIGNED_DOUBLE;		    tmp20 = c_re(inout[8 * iostride]);		    tmp22 = c_im(inout[8 * iostride]);		    tmp19 = c_re(W[7]);		    tmp21 = c_im(W[7]);		    tmp23 = (tmp19 * tmp20) + (tmp21 * tmp22);		    tmp69 = (tmp19 * tmp22) - (tmp21 * tmp20);	       }	       tmp18 = tmp12 - tmp17;	       tmp29 = tmp23 - tmp28;	       tmp30 = tmp18 + tmp29;	       tmp56 = tmp12 + tmp17;	       tmp57 = tmp23 + tmp28;	       tmp58 = tmp56 + tmp57;	       tmp68 = tmp66 - tmp67;	       tmp71 = tmp69 - tmp70;	       tmp112 = tmp68 + tmp71;	       tmp86 = tmp66 + tmp67;	       tmp87 = tmp69 + tmp70;	       tmp95 = tmp86 + tmp87;	  }	  {	       fftw_real tmp64;	       fftw_real tmp54;	       fftw_real tmp63;	       fftw_real tmp80;	       fftw_real tmp82;	       fftw_real tmp72;	       fftw_real tmp79;	       fftw_real tmp81;	       fftw_real tmp65;	       ASSERT_ALIGNED_DOUBLE;	       tmp64 = K559016994 * (tmp30 - tmp53);	       tmp54 = tmp30 + tmp53;	       tmp63 = tmp7 - (K250000000 * tmp54);	       tmp72 = tmp68 - tmp71;	       tmp79 = tmp75 - tmp78;	       tmp80 = (K587785252 * tmp72) - (K951056516 * tmp79);	       tmp82 = (K951056516 * tmp72) + (K587785252 * tmp79);	       c_re(inout[5 * iostride]) = tmp7 + tmp54;	       tmp81 = tmp64 + tmp63;	       c_re(inout[iostride]) = tmp81 - tmp82;	       c_re(inout[9 * iostride]) = tmp81 + tmp82;	       tmp65 = tmp63 - tmp64;	       c_re(inout[7 * iostride]) = tmp65 - tmp80;	       c_re(inout[3 * iostride]) = tmp65 + tmp80;	  }	  {	       fftw_real tmp114;	       fftw_real tmp116;	       fftw_real tmp117;	       fftw_real tmp111;	       fftw_real tmp120;	       fftw_real tmp109;	       fftw_real tmp110;	       fftw_real tmp119;	       fftw_real tmp118;	       ASSERT_ALIGNED_DOUBLE;	       tmp114 = K559016994 * (tmp112 - tmp113);	       tmp116 = tmp112 + tmp113;	       tmp117 = tmp115 - (K250000000 * tmp116);	       tmp109 = tmp18 - tmp29;	       tmp110 = tmp41 - tmp52;	       tmp111 = (K951056516 * tmp109) + (K587785252 * tmp110);	       tmp120 = (K587785252 * tmp109) - (K951056516 * tmp110);	       c_im(inout[5 * iostride]) = tmp116 + tmp115;	       tmp119 = tmp117 - tmp114;	       c_im(inout[3 * iostride]) = tmp119 - tmp120;	       c_im(inout[7 * iostride]) = tmp120 + tmp119;	       tmp118 = tmp114 + tmp117;	       c_im(inout[iostride]) = tmp111 + tmp118;	       c_im(inout[9 * iostride]) = tmp118 - tmp111;	  }	  {	       fftw_real tmp84;	       fftw_real tmp62;	       fftw_real tmp83;	       fftw_real tmp92;	       fftw_real tmp94;	       fftw_real tmp88;	       fftw_real tmp91;	       fftw_real tmp93;	       fftw_real tmp85;	       ASSERT_ALIGNED_DOUBLE;	       tmp84 = K559016994 * (tmp58 - tmp61);	       tmp62 = tmp58 + tmp61;	       tmp83 = tmp55 - (K250000000 * tmp62);	       tmp88 = tmp86 - tmp87;	       tmp91 = tmp89 - tmp90;	       tmp92 = (K587785252 * tmp88) - (K951056516 * tmp91);	       tmp94 = (K951056516 * tmp88) + (K587785252 * tmp91);	       c_re(inout[0]) = tmp55 + tmp62;	       tmp93 = tmp84 + tmp83;	       c_re(inout[6 * iostride]) = tmp93 - tmp94;	       c_re(inout[4 * iostride]) = tmp93 + tmp94;	       tmp85 = tmp83 - tmp84;	       c_re(inout[2 * iostride]) = tmp85 - tmp92;	       c_re(inout[8 * iostride]) = tmp85 + tmp92;	  }	  {	       fftw_real tmp105;	       fftw_real tmp97;	       fftw_real tmp104;	       fftw_real tmp103;	       fftw_real tmp108;	       fftw_real tmp101;	       fftw_real tmp102;	       fftw_real tmp107;	       fftw_real tmp106;	       ASSERT_ALIGNED_DOUBLE;	       tmp105 = K559016994 * (tmp95 - tmp96);	       tmp97 = tmp95 + tmp96;	       tmp104 = tmp100 - (K250000000 * tmp97);	       tmp101 = tmp56 - tmp57;	       tmp102 = tmp59 - tmp60;	       tmp103 = (K587785252 * tmp101) - (K951056516 * tmp102);	       tmp108 = (K951056516 * tmp101) + (K587785252 * tmp102);	       c_im(inout[0]) = tmp97 + tmp100;	       tmp107 = tmp105 + tmp104;	       c_im(inout[4 * iostride]) = tmp107 - tmp108;	       c_im(inout[6 * iostride]) = tmp108 + tmp107;	       tmp106 = tmp104 - tmp105;	       c_im(inout[2 * iostride]) = tmp103 + tmp106;	       c_im(inout[8 * iostride]) = tmp106 - tmp103;	  }     }}static const int twiddle_order[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };fftw_codelet_desc fftwi_twiddle_10_desc = {     "fftwi_twiddle_10",     (void (*)()) fftwi_twiddle_10,     10,     FFTW_BACKWARD,     FFTW_TWIDDLE,     231,     9,     twiddle_order,};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -