⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ftwi_8.c

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 C
字号:
/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Mon Mar 24 02:08:32 EST 2003 */#include "fftw-int.h"#include "fftw.h"/* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -twiddleinv 8 *//* * This function contains 66 FP additions, 32 FP multiplications, * (or, 52 additions, 18 multiplications, 14 fused multiply/add), * 28 stack variables, and 32 memory accesses */static const fftw_real K707106781 =FFTW_KONST(+0.707106781186547524400844362104849039284835938);/* * Generator Id's :  * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $ * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ */void fftwi_twiddle_8(fftw_complex *A, const fftw_complex *W, int iostride,		     int m, int dist){     int i;     fftw_complex *inout;     inout = A;     for (i = m; i > 0; i = i - 1, inout = inout + dist, W = W + 7) {	  fftw_real tmp7;	  fftw_real tmp43;	  fftw_real tmp71;	  fftw_real tmp77;	  fftw_real tmp41;	  fftw_real tmp53;	  fftw_real tmp56;	  fftw_real tmp64;	  fftw_real tmp18;	  fftw_real tmp76;	  fftw_real tmp46;	  fftw_real tmp68;	  fftw_real tmp30;	  fftw_real tmp48;	  fftw_real tmp51;	  fftw_real tmp65;	  ASSERT_ALIGNED_DOUBLE;	  {	       fftw_real tmp1;	       fftw_real tmp70;	       fftw_real tmp6;	       fftw_real tmp69;	       ASSERT_ALIGNED_DOUBLE;	       tmp1 = c_re(inout[0]);	       tmp70 = c_im(inout[0]);	       {		    fftw_real tmp3;		    fftw_real tmp5;		    fftw_real tmp2;		    fftw_real tmp4;		    ASSERT_ALIGNED_DOUBLE;		    tmp3 = c_re(inout[4 * iostride]);		    tmp5 = c_im(inout[4 * iostride]);		    tmp2 = c_re(W[3]);		    tmp4 = c_im(W[3]);		    tmp6 = (tmp2 * tmp3) + (tmp4 * tmp5);		    tmp69 = (tmp2 * tmp5) - (tmp4 * tmp3);	       }	       tmp7 = tmp1 + tmp6;	       tmp43 = tmp1 - tmp6;	       tmp71 = tmp69 + tmp70;	       tmp77 = tmp70 - tmp69;	  }	  {	       fftw_real tmp35;	       fftw_real tmp54;	       fftw_real tmp40;	       fftw_real tmp55;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp32;		    fftw_real tmp34;		    fftw_real tmp31;		    fftw_real tmp33;		    ASSERT_ALIGNED_DOUBLE;		    tmp32 = c_re(inout[7 * iostride]);		    tmp34 = c_im(inout[7 * iostride]);		    tmp31 = c_re(W[6]);		    tmp33 = c_im(W[6]);		    tmp35 = (tmp31 * tmp32) + (tmp33 * tmp34);		    tmp54 = (tmp31 * tmp34) - (tmp33 * tmp32);	       }	       {		    fftw_real tmp37;		    fftw_real tmp39;		    fftw_real tmp36;		    fftw_real tmp38;		    ASSERT_ALIGNED_DOUBLE;		    tmp37 = c_re(inout[3 * iostride]);		    tmp39 = c_im(inout[3 * iostride]);		    tmp36 = c_re(W[2]);		    tmp38 = c_im(W[2]);		    tmp40 = (tmp36 * tmp37) + (tmp38 * tmp39);		    tmp55 = (tmp36 * tmp39) - (tmp38 * tmp37);	       }	       tmp41 = tmp35 + tmp40;	       tmp53 = tmp35 - tmp40;	       tmp56 = tmp54 - tmp55;	       tmp64 = tmp54 + tmp55;	  }	  {	       fftw_real tmp12;	       fftw_real tmp44;	       fftw_real tmp17;	       fftw_real tmp45;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp9;		    fftw_real tmp11;		    fftw_real tmp8;		    fftw_real tmp10;		    ASSERT_ALIGNED_DOUBLE;		    tmp9 = c_re(inout[2 * iostride]);		    tmp11 = c_im(inout[2 * iostride]);		    tmp8 = c_re(W[1]);		    tmp10 = c_im(W[1]);		    tmp12 = (tmp8 * tmp9) + (tmp10 * tmp11);		    tmp44 = (tmp8 * tmp11) - (tmp10 * tmp9);	       }	       {		    fftw_real tmp14;		    fftw_real tmp16;		    fftw_real tmp13;		    fftw_real tmp15;		    ASSERT_ALIGNED_DOUBLE;		    tmp14 = c_re(inout[6 * iostride]);		    tmp16 = c_im(inout[6 * iostride]);		    tmp13 = c_re(W[5]);		    tmp15 = c_im(W[5]);		    tmp17 = (tmp13 * tmp14) + (tmp15 * tmp16);		    tmp45 = (tmp13 * tmp16) - (tmp15 * tmp14);	       }	       tmp18 = tmp12 + tmp17;	       tmp76 = tmp12 - tmp17;	       tmp46 = tmp44 - tmp45;	       tmp68 = tmp44 + tmp45;	  }	  {	       fftw_real tmp24;	       fftw_real tmp49;	       fftw_real tmp29;	       fftw_real tmp50;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp21;		    fftw_real tmp23;		    fftw_real tmp20;		    fftw_real tmp22;		    ASSERT_ALIGNED_DOUBLE;		    tmp21 = c_re(inout[iostride]);		    tmp23 = c_im(inout[iostride]);		    tmp20 = c_re(W[0]);		    tmp22 = c_im(W[0]);		    tmp24 = (tmp20 * tmp21) + (tmp22 * tmp23);		    tmp49 = (tmp20 * tmp23) - (tmp22 * tmp21);	       }	       {		    fftw_real tmp26;		    fftw_real tmp28;		    fftw_real tmp25;		    fftw_real tmp27;		    ASSERT_ALIGNED_DOUBLE;		    tmp26 = c_re(inout[5 * iostride]);		    tmp28 = c_im(inout[5 * iostride]);		    tmp25 = c_re(W[4]);		    tmp27 = c_im(W[4]);		    tmp29 = (tmp25 * tmp26) + (tmp27 * tmp28);		    tmp50 = (tmp25 * tmp28) - (tmp27 * tmp26);	       }	       tmp30 = tmp24 + tmp29;	       tmp48 = tmp24 - tmp29;	       tmp51 = tmp49 - tmp50;	       tmp65 = tmp49 + tmp50;	  }	  {	       fftw_real tmp19;	       fftw_real tmp42;	       fftw_real tmp63;	       fftw_real tmp66;	       ASSERT_ALIGNED_DOUBLE;	       tmp19 = tmp7 + tmp18;	       tmp42 = tmp30 + tmp41;	       c_re(inout[4 * iostride]) = tmp19 - tmp42;	       c_re(inout[0]) = tmp19 + tmp42;	       {		    fftw_real tmp73;		    fftw_real tmp74;		    fftw_real tmp67;		    fftw_real tmp72;		    ASSERT_ALIGNED_DOUBLE;		    tmp73 = tmp30 - tmp41;		    tmp74 = tmp71 - tmp68;		    c_im(inout[2 * iostride]) = tmp73 + tmp74;		    c_im(inout[6 * iostride]) = tmp74 - tmp73;		    tmp67 = tmp65 + tmp64;		    tmp72 = tmp68 + tmp71;		    c_im(inout[0]) = tmp67 + tmp72;		    c_im(inout[4 * iostride]) = tmp72 - tmp67;	       }	       tmp63 = tmp7 - tmp18;	       tmp66 = tmp64 - tmp65;	       c_re(inout[6 * iostride]) = tmp63 - tmp66;	       c_re(inout[2 * iostride]) = tmp63 + tmp66;	       {		    fftw_real tmp59;		    fftw_real tmp78;		    fftw_real tmp62;		    fftw_real tmp75;		    fftw_real tmp60;		    fftw_real tmp61;		    ASSERT_ALIGNED_DOUBLE;		    tmp59 = tmp43 + tmp46;		    tmp78 = tmp76 + tmp77;		    tmp60 = tmp56 - tmp53;		    tmp61 = tmp48 + tmp51;		    tmp62 = K707106781 * (tmp60 - tmp61);		    tmp75 = K707106781 * (tmp61 + tmp60);		    c_re(inout[7 * iostride]) = tmp59 - tmp62;		    c_re(inout[3 * iostride]) = tmp59 + tmp62;		    c_im(inout[iostride]) = tmp75 + tmp78;		    c_im(inout[5 * iostride]) = tmp78 - tmp75;	       }	       {		    fftw_real tmp47;		    fftw_real tmp80;		    fftw_real tmp58;		    fftw_real tmp79;		    fftw_real tmp52;		    fftw_real tmp57;		    ASSERT_ALIGNED_DOUBLE;		    tmp47 = tmp43 - tmp46;		    tmp80 = tmp77 - tmp76;		    tmp52 = tmp48 - tmp51;		    tmp57 = tmp53 + tmp56;		    tmp58 = K707106781 * (tmp52 + tmp57);		    tmp79 = K707106781 * (tmp52 - tmp57);		    c_re(inout[5 * iostride]) = tmp47 - tmp58;		    c_re(inout[iostride]) = tmp47 + tmp58;		    c_im(inout[3 * iostride]) = tmp79 + tmp80;		    c_im(inout[7 * iostride]) = tmp80 - tmp79;	       }	  }     }}static const int twiddle_order[] = { 1, 2, 3, 4, 5, 6, 7 };fftw_codelet_desc fftwi_twiddle_8_desc = {     "fftwi_twiddle_8",     (void (*)()) fftwi_twiddle_8,     8,     FFTW_BACKWARD,     FFTW_TWIDDLE,     187,     7,     twiddle_order,};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -