⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rader.c

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 C
字号:
/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* * Compute transforms of prime sizes using Rader's trick: turn them * into convolutions of size n - 1, which you then perform via a pair * of FFTs.  */#include <stdlib.h>#include <math.h>#include "fftw-int.h"#ifdef FFTW_DEBUG#define WHEN_DEBUG(a) a#else#define WHEN_DEBUG(a)#endif/* compute n^m mod p, where m >= 0 and p > 0. */static int power_mod(int n, int m, int p){     if (m == 0)	  return 1;     else if (m % 2 == 0) {	  int x = power_mod(n, m / 2, p);	  return MULMOD(x, x, p);     }     else	  return MULMOD(n, power_mod(n, m - 1, p), p);}/* * Find the period of n in the multiplicative group mod p (p prime). * That is, return the smallest m such that n^m == 1 mod p. */static int period(int n, int p){     int prod = n, period = 1;     while (prod != 1) {	  prod = MULMOD(prod, n, p);	  ++period;	  if (prod == 0)	       fftw_die("non-prime order in Rader\n");     }     return period;}/* find a generator for the multiplicative group mod p, where p is prime */static int find_generator(int p){     int g;     for (g = 1; g < p; ++g)	  if (period(g, p) == p - 1)	       break;     if (g == p)	  fftw_die("couldn't find generator for Rader\n");     return g;}/***************************************************************************/static fftw_rader_data *create_rader_aux(int p, int flags){     fftw_complex *omega, *work;     int g, ginv, gpower;     int i;     FFTW_TRIG_REAL twoPiOverN;     fftw_real scale = 1.0 / (p - 1);	/* for convolution */     fftw_plan plan;     fftw_rader_data *d;     if (p < 2)	  fftw_die("non-prime order in Rader\n");     flags &= ~FFTW_IN_PLACE;     d = (fftw_rader_data *) fftw_malloc(sizeof(fftw_rader_data));     g = find_generator(p);     ginv = power_mod(g, p - 2, p);     omega = (fftw_complex *) fftw_malloc((p - 1) * sizeof(fftw_complex));     plan = fftw_create_plan(p - 1, FFTW_FORWARD,			     flags & ~FFTW_NO_VECTOR_RECURSE);     work = (fftw_complex *) fftw_malloc((p - 1) * sizeof(fftw_complex));     twoPiOverN = FFTW_K2PI / (FFTW_TRIG_REAL) p;     gpower = 1;     for (i = 0; i < p - 1; ++i) {	  c_re(work[i]) = scale * FFTW_TRIG_COS(twoPiOverN * gpower);	  c_im(work[i]) = FFTW_FORWARD * scale * FFTW_TRIG_SIN(twoPiOverN 							       * gpower);	  gpower = MULMOD(gpower, ginv, p);     }     /* fft permuted roots of unity */     fftw_executor_simple(p - 1, work, omega, plan->root, 1, 1,			  plan->recurse_kind);     fftw_free(work);     d->plan = plan;     d->omega = omega;     d->g = g;     d->ginv = ginv;     d->p = p;     d->flags = flags;     d->refcount = 1;     d->next = NULL;     d->cdesc = (fftw_codelet_desc *) fftw_malloc(sizeof(fftw_codelet_desc));     d->cdesc->name = NULL;     d->cdesc->codelet = NULL;     d->cdesc->size = p;     d->cdesc->dir = FFTW_FORWARD;     d->cdesc->type = FFTW_RADER;     d->cdesc->signature = g;     d->cdesc->ntwiddle = 0;     d->cdesc->twiddle_order = NULL;     return d;}/***************************************************************************/static fftw_rader_data *fftw_create_rader(int p, int flags){     fftw_rader_data *d = fftw_rader_top;     flags &= ~FFTW_IN_PLACE;     while (d && (d->p != p || d->flags != flags))	  d = d->next;     if (d) {	  d->refcount++;	  return d;     }     d = create_rader_aux(p, flags);     d->next = fftw_rader_top;     fftw_rader_top = d;     return d;}/***************************************************************************//* Compute the prime FFTs, premultiplied by twiddle factors.  Below, we * extensively use the identity that fft(x*)* = ifft(x) in order to * share data between forward and backward transforms and to obviate * the necessity of having separate forward and backward plans. */void fftw_twiddle_rader(fftw_complex *A, const fftw_complex *W,			int m, int r, int stride,			fftw_rader_data * d){     fftw_complex *tmp = (fftw_complex *)     fftw_malloc((r - 1) * sizeof(fftw_complex));     int i, k, gpower = 1, g = d->g, ginv = d->ginv;     fftw_real a0r, a0i;     fftw_complex *omega = d->omega;     for (i = 0; i < m; ++i, A += stride, W += r - 1) {	  /* 	   * Here, we fft W[k-1] * A[k*(m*stride)], using Rader.	   * (Actually, W is pre-permuted to match the permutation that we 	   * will do on A.) 	   */	  /* First, permute the input and multiply by W, storing in tmp: */	  /* gpower == g^k mod r in the following loop */	  for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {	       fftw_real rA, iA, rW, iW;	       rW = c_re(W[k]);	       iW = c_im(W[k]);	       rA = c_re(A[gpower * (m * stride)]);	       iA = c_im(A[gpower * (m * stride)]);	       c_re(tmp[k]) = rW * rA - iW * iA;	       c_im(tmp[k]) = rW * iA + iW * rA;	  }	  WHEN_DEBUG( {		     if (gpower != 1)		     fftw_die("incorrect generator in Rader\n");		     }	  );	  /* FFT tmp to A: */	  fftw_executor_simple(r - 1, tmp, A + (m * stride),			       d->plan->root, 1, m * stride,			       d->plan->recurse_kind);	  /* set output DC component: */	  a0r = c_re(A[0]);	  a0i = c_im(A[0]);	  c_re(A[0]) += c_re(A[(m * stride)]);	  c_im(A[0]) += c_im(A[(m * stride)]);	  /* now, multiply by omega: */	  for (k = 0; k < r - 1; ++k) {	       fftw_real rA, iA, rW, iW;	       rW = c_re(omega[k]);	       iW = c_im(omega[k]);	       rA = c_re(A[(k + 1) * (m * stride)]);	       iA = c_im(A[(k + 1) * (m * stride)]);	       c_re(A[(k + 1) * (m * stride)]) = rW * rA - iW * iA;	       c_im(A[(k + 1) * (m * stride)]) = -(rW * iA + iW * rA);	  }	  /* this will add A[0] to all of the outputs after the ifft */	  c_re(A[(m * stride)]) += a0r;	  c_im(A[(m * stride)]) -= a0i;	  /* inverse FFT: */	  fftw_executor_simple(r - 1, A + (m * stride), tmp,			       d->plan->root, m * stride, 1,			       d->plan->recurse_kind);	  /* finally, do inverse permutation to unshuffle the output: */	  for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {	       c_re(A[gpower * (m * stride)]) = c_re(tmp[k]);	       c_im(A[gpower * (m * stride)]) = -c_im(tmp[k]);	  }	  WHEN_DEBUG( {		     if (gpower != 1)		     fftw_die("incorrect generator in Rader\n");		     }	  );     }     fftw_free(tmp);}void fftwi_twiddle_rader(fftw_complex *A, const fftw_complex *W,			 int m, int r, int stride,			 fftw_rader_data * d){     fftw_complex *tmp = (fftw_complex *)     fftw_malloc((r - 1) * sizeof(fftw_complex));     int i, k, gpower = 1, g = d->g, ginv = d->ginv;     fftw_real a0r, a0i;     fftw_complex *omega = d->omega;     for (i = 0; i < m; ++i, A += stride, W += r - 1) {	  /* 	   * Here, we fft W[k-1]* * A[k*(m*stride)], using Rader. 	   * (Actually, W is pre-permuted to match the permutation that	   * we will do on A.) 	   */	  /* First, permute the input and multiply by W*, storing in tmp: */	  /* gpower == g^k mod r in the following loop */	  for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {	       fftw_real rA, iA, rW, iW;	       rW = c_re(W[k]);	       iW = c_im(W[k]);	       rA = c_re(A[gpower * (m * stride)]);	       iA = c_im(A[gpower * (m * stride)]);	       c_re(tmp[k]) = rW * rA + iW * iA;	       c_im(tmp[k]) = iW * rA - rW * iA;	  }	  WHEN_DEBUG( {		     if (gpower != 1)		     fftw_die("incorrect generator in Rader\n");		     }	  );	  /* FFT tmp to A: */	  fftw_executor_simple(r - 1, tmp, A + (m * stride),			       d->plan->root, 1, m * stride,			       d->plan->recurse_kind);	  /* set output DC component: */	  a0r = c_re(A[0]);	  a0i = c_im(A[0]);	  c_re(A[0]) += c_re(A[(m * stride)]);	  c_im(A[0]) -= c_im(A[(m * stride)]);	  /* now, multiply by omega: */	  for (k = 0; k < r - 1; ++k) {	       fftw_real rA, iA, rW, iW;	       rW = c_re(omega[k]);	       iW = c_im(omega[k]);	       rA = c_re(A[(k + 1) * (m * stride)]);	       iA = c_im(A[(k + 1) * (m * stride)]);	       c_re(A[(k + 1) * (m * stride)]) = rW * rA - iW * iA;	       c_im(A[(k + 1) * (m * stride)]) = -(rW * iA + iW * rA);	  }	  /* this will add A[0] to all of the outputs after the ifft */	  c_re(A[(m * stride)]) += a0r;	  c_im(A[(m * stride)]) += a0i;	  /* inverse FFT: */	  fftw_executor_simple(r - 1, A + (m * stride), tmp,			       d->plan->root, m * stride, 1,			       d->plan->recurse_kind);	  /* finally, do inverse permutation to unshuffle the output: */	  for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {	       A[gpower * (m * stride)] = tmp[k];	  }	  WHEN_DEBUG( {		     if (gpower != 1)		     fftw_die("incorrect generator in Rader\n");		     }	  );     }     fftw_free(tmp);}/***************************************************************************//* * Make an FFTW_RADER plan node.  Note that this function must go * here, rather than in putils.c, because it indirectly calls the * fftw_planner.  If we included it in putils.c, which is also used * by rfftw, then any program using rfftw would be linked with all * of the FFTW codelets, even if they were not needed.   I wish that the * darn linkers operated on a function rather than a file granularity.  */fftw_plan_node *fftw_make_node_rader(int n, int size, fftw_direction dir,				     fftw_plan_node *recurse,				     int flags){     fftw_plan_node *p = fftw_make_node();     p->type = FFTW_RADER;     p->nodeu.rader.size = size;     p->nodeu.rader.codelet = dir == FFTW_FORWARD ?	 fftw_twiddle_rader : fftwi_twiddle_rader;     p->nodeu.rader.rader_data = fftw_create_rader(size, flags);     p->nodeu.rader.recurse = recurse;     fftw_use_node(recurse);     if (flags & FFTW_MEASURE)	  p->nodeu.rader.tw =	      fftw_create_twiddle(n, p->nodeu.rader.rader_data->cdesc);     else	  p->nodeu.rader.tw = 0;     return p;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -