⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ftwi_7.c

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 C
字号:
/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Mon Mar 24 02:08:26 EST 2003 */#include "fftw-int.h"#include "fftw.h"/* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -twiddleinv 7 *//* * This function contains 72 FP additions, 60 FP multiplications, * (or, 60 additions, 48 multiplications, 12 fused multiply/add), * 24 stack variables, and 28 memory accesses */static const fftw_real K222520933 =FFTW_KONST(+0.222520933956314404288902564496794759466355569);static const fftw_real K900968867 =FFTW_KONST(+0.900968867902419126236102319507445051165919162);static const fftw_real K623489801 =FFTW_KONST(+0.623489801858733530525004884004239810632274731);static const fftw_real K433883739 =FFTW_KONST(+0.433883739117558120475768332848358754609990728);static const fftw_real K974927912 =FFTW_KONST(+0.974927912181823607018131682993931217232785801);static const fftw_real K781831482 =FFTW_KONST(+0.781831482468029808708444526674057750232334519);/* * Generator Id's :  * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $ * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ */void fftwi_twiddle_7(fftw_complex *A, const fftw_complex *W, int iostride,		     int m, int dist){     int i;     fftw_complex *inout;     inout = A;     for (i = m; i > 0; i = i - 1, inout = inout + dist, W = W + 6) {	  fftw_real tmp1;	  fftw_real tmp53;	  fftw_real tmp12;	  fftw_real tmp54;	  fftw_real tmp38;	  fftw_real tmp50;	  fftw_real tmp23;	  fftw_real tmp55;	  fftw_real tmp44;	  fftw_real tmp51;	  fftw_real tmp34;	  fftw_real tmp56;	  fftw_real tmp41;	  fftw_real tmp52;	  ASSERT_ALIGNED_DOUBLE;	  tmp1 = c_re(inout[0]);	  tmp53 = c_im(inout[0]);	  {	       fftw_real tmp6;	       fftw_real tmp37;	       fftw_real tmp11;	       fftw_real tmp36;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp3;		    fftw_real tmp5;		    fftw_real tmp2;		    fftw_real tmp4;		    ASSERT_ALIGNED_DOUBLE;		    tmp3 = c_re(inout[iostride]);		    tmp5 = c_im(inout[iostride]);		    tmp2 = c_re(W[0]);		    tmp4 = c_im(W[0]);		    tmp6 = (tmp2 * tmp3) + (tmp4 * tmp5);		    tmp37 = (tmp2 * tmp5) - (tmp4 * tmp3);	       }	       {		    fftw_real tmp8;		    fftw_real tmp10;		    fftw_real tmp7;		    fftw_real tmp9;		    ASSERT_ALIGNED_DOUBLE;		    tmp8 = c_re(inout[6 * iostride]);		    tmp10 = c_im(inout[6 * iostride]);		    tmp7 = c_re(W[5]);		    tmp9 = c_im(W[5]);		    tmp11 = (tmp7 * tmp8) + (tmp9 * tmp10);		    tmp36 = (tmp7 * tmp10) - (tmp9 * tmp8);	       }	       tmp12 = tmp6 + tmp11;	       tmp54 = tmp6 - tmp11;	       tmp38 = tmp36 - tmp37;	       tmp50 = tmp37 + tmp36;	  }	  {	       fftw_real tmp17;	       fftw_real tmp43;	       fftw_real tmp22;	       fftw_real tmp42;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp14;		    fftw_real tmp16;		    fftw_real tmp13;		    fftw_real tmp15;		    ASSERT_ALIGNED_DOUBLE;		    tmp14 = c_re(inout[2 * iostride]);		    tmp16 = c_im(inout[2 * iostride]);		    tmp13 = c_re(W[1]);		    tmp15 = c_im(W[1]);		    tmp17 = (tmp13 * tmp14) + (tmp15 * tmp16);		    tmp43 = (tmp13 * tmp16) - (tmp15 * tmp14);	       }	       {		    fftw_real tmp19;		    fftw_real tmp21;		    fftw_real tmp18;		    fftw_real tmp20;		    ASSERT_ALIGNED_DOUBLE;		    tmp19 = c_re(inout[5 * iostride]);		    tmp21 = c_im(inout[5 * iostride]);		    tmp18 = c_re(W[4]);		    tmp20 = c_im(W[4]);		    tmp22 = (tmp18 * tmp19) + (tmp20 * tmp21);		    tmp42 = (tmp18 * tmp21) - (tmp20 * tmp19);	       }	       tmp23 = tmp17 + tmp22;	       tmp55 = tmp17 - tmp22;	       tmp44 = tmp42 - tmp43;	       tmp51 = tmp43 + tmp42;	  }	  {	       fftw_real tmp28;	       fftw_real tmp40;	       fftw_real tmp33;	       fftw_real tmp39;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp25;		    fftw_real tmp27;		    fftw_real tmp24;		    fftw_real tmp26;		    ASSERT_ALIGNED_DOUBLE;		    tmp25 = c_re(inout[3 * iostride]);		    tmp27 = c_im(inout[3 * iostride]);		    tmp24 = c_re(W[2]);		    tmp26 = c_im(W[2]);		    tmp28 = (tmp24 * tmp25) + (tmp26 * tmp27);		    tmp40 = (tmp24 * tmp27) - (tmp26 * tmp25);	       }	       {		    fftw_real tmp30;		    fftw_real tmp32;		    fftw_real tmp29;		    fftw_real tmp31;		    ASSERT_ALIGNED_DOUBLE;		    tmp30 = c_re(inout[4 * iostride]);		    tmp32 = c_im(inout[4 * iostride]);		    tmp29 = c_re(W[3]);		    tmp31 = c_im(W[3]);		    tmp33 = (tmp29 * tmp30) + (tmp31 * tmp32);		    tmp39 = (tmp29 * tmp32) - (tmp31 * tmp30);	       }	       tmp34 = tmp28 + tmp33;	       tmp56 = tmp28 - tmp33;	       tmp41 = tmp39 - tmp40;	       tmp52 = tmp40 + tmp39;	  }	  {	       fftw_real tmp47;	       fftw_real tmp46;	       fftw_real tmp59;	       fftw_real tmp60;	       ASSERT_ALIGNED_DOUBLE;	       c_re(inout[0]) = tmp1 + tmp12 + tmp23 + tmp34;	       tmp47 =		   (K781831482 * tmp38) + (K974927912 * tmp44) +		   (K433883739 * tmp41);	       tmp46 =		   tmp1 + (K623489801 * tmp12) - (K900968867 * tmp34) -		   (K222520933 * tmp23);	       c_re(inout[6 * iostride]) = tmp46 - tmp47;	       c_re(inout[iostride]) = tmp46 + tmp47;	       {		    fftw_real tmp49;		    fftw_real tmp48;		    fftw_real tmp45;		    fftw_real tmp35;		    ASSERT_ALIGNED_DOUBLE;		    tmp49 =			(K433883739 * tmp38) + (K974927912 * tmp41) -			(K781831482 * tmp44);		    tmp48 =			tmp1 + (K623489801 * tmp23) -			(K222520933 * tmp34) - (K900968867 * tmp12);		    c_re(inout[4 * iostride]) = tmp48 - tmp49;		    c_re(inout[3 * iostride]) = tmp48 + tmp49;		    tmp45 =			(K974927912 * tmp38) - (K781831482 * tmp41) -			(K433883739 * tmp44);		    tmp35 =			tmp1 + (K623489801 * tmp34) -			(K900968867 * tmp23) - (K222520933 * tmp12);		    c_re(inout[5 * iostride]) = tmp35 - tmp45;		    c_re(inout[2 * iostride]) = tmp35 + tmp45;	       }	       c_im(inout[0]) = tmp50 + tmp51 + tmp52 + tmp53;	       tmp59 =		   (K974927912 * tmp54) - (K781831482 * tmp56) -		   (K433883739 * tmp55);	       tmp60 =		   (K623489801 * tmp52) + tmp53 - (K900968867 * tmp51) -		   (K222520933 * tmp50);	       c_im(inout[2 * iostride]) = tmp59 + tmp60;	       c_im(inout[5 * iostride]) = tmp60 - tmp59;	       {		    fftw_real tmp61;		    fftw_real tmp62;		    fftw_real tmp57;		    fftw_real tmp58;		    ASSERT_ALIGNED_DOUBLE;		    tmp61 =			(K433883739 * tmp54) + (K974927912 * tmp56) -			(K781831482 * tmp55);		    tmp62 =			(K623489801 * tmp51) + tmp53 -			(K222520933 * tmp52) - (K900968867 * tmp50);		    c_im(inout[3 * iostride]) = tmp61 + tmp62;		    c_im(inout[4 * iostride]) = tmp62 - tmp61;		    tmp57 =			(K781831482 * tmp54) + (K974927912 * tmp55) +			(K433883739 * tmp56);		    tmp58 =			(K623489801 * tmp50) + tmp53 -			(K900968867 * tmp52) - (K222520933 * tmp51);		    c_im(inout[iostride]) = tmp57 + tmp58;		    c_im(inout[6 * iostride]) = tmp58 - tmp57;	       }	  }     }}static const int twiddle_order[] = { 1, 2, 3, 4, 5, 6 };fftw_codelet_desc fftwi_twiddle_7_desc = {     "fftwi_twiddle_7",     (void (*)()) fftwi_twiddle_7,     7,     FFTW_BACKWARD,     FFTW_TWIDDLE,     165,     6,     twiddle_order,};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -