⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fhb_9.c

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Mon Mar 24 02:08:58 EST 2003 */#include "fftw-int.h"#include "fftw.h"/* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -hc2hc-backward 9 *//* * This function contains 182 FP additions, 121 FP multiplications, * (or, 130 additions, 69 multiplications, 52 fused multiply/add), * 43 stack variables, and 72 memory accesses */static const fftw_real K296198132 =FFTW_KONST(+0.296198132726023843175338011893050938967728390);static const fftw_real K813797681 =FFTW_KONST(+0.813797681349373692844693217248393223289101568);static const fftw_real K852868531 =FFTW_KONST(+0.852868531952443209628250963940074071936020296);static const fftw_real K150383733 =FFTW_KONST(+0.150383733180435296639271897612501926072238258);static const fftw_real K663413948 =FFTW_KONST(+0.663413948168938396205421319635891297216863310);static const fftw_real K556670399 =FFTW_KONST(+0.556670399226419366452912952047023132968291906);static const fftw_real K939692620 =FFTW_KONST(+0.939692620785908384054109277324731469936208134);static const fftw_real K342020143 =FFTW_KONST(+0.342020143325668733044099614682259580763083368);static const fftw_real K984807753 =FFTW_KONST(+0.984807753012208059366743024589523013670643252);static const fftw_real K173648177 =FFTW_KONST(+0.173648177666930348851716626769314796000375677);static const fftw_real K1_705737063 =FFTW_KONST(+1.705737063904886419256501927880148143872040591);static const fftw_real K300767466 =FFTW_KONST(+0.300767466360870593278543795225003852144476517);static const fftw_real K642787609 =FFTW_KONST(+0.642787609686539326322643409907263432907559884);static const fftw_real K766044443 =FFTW_KONST(+0.766044443118978035202392650555416673935832457);static const fftw_real K1_113340798 =FFTW_KONST(+1.113340798452838732905825904094046265936583811);static const fftw_real K1_326827896 =FFTW_KONST(+1.326827896337876792410842639271782594433726619);static const fftw_real K500000000 =FFTW_KONST(+0.500000000000000000000000000000000000000000000);static const fftw_real K866025403 =FFTW_KONST(+0.866025403784438646763723170752936183471402627);static const fftw_real K2_000000000 =FFTW_KONST(+2.000000000000000000000000000000000000000000000);static const fftw_real K1_732050807 =FFTW_KONST(+1.732050807568877293527446341505872366942805254);/* * Generator Id's :  * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $ * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ */void fftw_hc2hc_backward_9(fftw_real *A, const fftw_complex *W,			   int iostride, int m, int dist){     int i;     fftw_real *X;     fftw_real *Y;     X = A;     Y = A + (9 * iostride);     {	  fftw_real tmp154;	  fftw_real tmp182;	  fftw_real tmp176;	  fftw_real tmp161;	  fftw_real tmp164;	  fftw_real tmp159;	  fftw_real tmp168;	  fftw_real tmp179;	  fftw_real tmp171;	  fftw_real tmp180;	  fftw_real tmp160;	  fftw_real tmp165;	  ASSERT_ALIGNED_DOUBLE;	  {	       fftw_real tmp175;	       fftw_real tmp152;	       fftw_real tmp153;	       fftw_real tmp173;	       fftw_real tmp174;	       ASSERT_ALIGNED_DOUBLE;	       tmp174 = Y[-3 * iostride];	       tmp175 = K1_732050807 * tmp174;	       tmp152 = X[0];	       tmp153 = X[3 * iostride];	       tmp173 = tmp153 - tmp152;	       tmp154 = tmp152 + (K2_000000000 * tmp153);	       tmp182 = tmp175 - tmp173;	       tmp176 = tmp173 + tmp175;	  }	  {	       fftw_real tmp155;	       fftw_real tmp158;	       fftw_real tmp169;	       fftw_real tmp167;	       fftw_real tmp166;	       fftw_real tmp170;	       ASSERT_ALIGNED_DOUBLE;	       tmp155 = X[iostride];	       tmp161 = Y[-iostride];	       {		    fftw_real tmp156;		    fftw_real tmp157;		    fftw_real tmp162;		    fftw_real tmp163;		    ASSERT_ALIGNED_DOUBLE;		    tmp156 = X[4 * iostride];		    tmp157 = X[2 * iostride];		    tmp158 = tmp156 + tmp157;		    tmp169 = K866025403 * (tmp156 - tmp157);		    tmp162 = Y[-2 * iostride];		    tmp163 = Y[-4 * iostride];		    tmp164 = tmp162 - tmp163;		    tmp167 = K866025403 * (tmp162 + tmp163);	       }	       tmp159 = tmp155 + tmp158;	       tmp166 = tmp155 - (K500000000 * tmp158);	       tmp168 = tmp166 - tmp167;	       tmp179 = tmp166 + tmp167;	       tmp170 = tmp161 + (K500000000 * tmp164);	       tmp171 = tmp169 + tmp170;	       tmp180 = tmp170 - tmp169;	  }	  X[0] = tmp154 + (K2_000000000 * tmp159);	  tmp160 = tmp154 - tmp159;	  tmp165 = K1_732050807 * (tmp161 - tmp164);	  X[6 * iostride] = tmp160 + tmp165;	  X[3 * iostride] = tmp160 - tmp165;	  {	       fftw_real tmp177;	       fftw_real tmp172;	       fftw_real tmp178;	       fftw_real tmp184;	       fftw_real tmp181;	       fftw_real tmp183;	       ASSERT_ALIGNED_DOUBLE;	       tmp177 = (K1_326827896 * tmp171) + (K1_113340798 * tmp168);	       tmp172 = (K766044443 * tmp168) - (K642787609 * tmp171);	       tmp178 = tmp172 + tmp176;	       X[iostride] = (K2_000000000 * tmp172) - tmp176;	       X[7 * iostride] = tmp177 - tmp178;	       X[4 * iostride] = -(tmp177 + tmp178);	       tmp184 = (K300767466 * tmp180) + (K1_705737063 * tmp179);	       tmp181 = (K173648177 * tmp179) - (K984807753 * tmp180);	       tmp183 = tmp182 - tmp181;	       X[2 * iostride] = (K2_000000000 * tmp181) + tmp182;	       X[8 * iostride] = tmp184 + tmp183;	       X[5 * iostride] = tmp183 - tmp184;	  }     }     X = X + dist;     Y = Y - dist;     for (i = 2; i < m; i = i + 2, X = X + dist, Y = Y - dist, W = W + 8) {	  fftw_real tmp44;	  fftw_real tmp87;	  fftw_real tmp135;	  fftw_real tmp60;	  fftw_real tmp107;	  fftw_real tmp125;	  fftw_real tmp49;	  fftw_real tmp54;	  fftw_real tmp55;	  fftw_real tmp101;	  fftw_real tmp109;	  fftw_real tmp131;	  fftw_real tmp137;	  fftw_real tmp128;	  fftw_real tmp136;	  fftw_real tmp94;	  fftw_real tmp108;	  fftw_real tmp65;	  fftw_real tmp70;	  fftw_real tmp71;	  ASSERT_ALIGNED_DOUBLE;	  {	       fftw_real tmp40;	       fftw_real tmp56;	       fftw_real tmp43;	       fftw_real tmp105;	       fftw_real tmp59;	       fftw_real tmp86;	       fftw_real tmp85;	       fftw_real tmp106;	       ASSERT_ALIGNED_DOUBLE;	       tmp40 = X[0];	       tmp56 = Y[0];	       {		    fftw_real tmp41;		    fftw_real tmp42;		    fftw_real tmp57;		    fftw_real tmp58;		    ASSERT_ALIGNED_DOUBLE;		    tmp41 = X[3 * iostride];		    tmp42 = Y[-6 * iostride];		    tmp43 = tmp41 + tmp42;		    tmp105 = K866025403 * (tmp41 - tmp42);		    tmp57 = Y[-3 * iostride];		    tmp58 = X[6 * iostride];		    tmp59 = tmp57 - tmp58;		    tmp86 = K866025403 * (tmp57 + tmp58);	       }	       tmp44 = tmp40 + tmp43;	       tmp85 = tmp40 - (K500000000 * tmp43);	       tmp87 = tmp85 - tmp86;	       tmp135 = tmp85 + tmp86;	       tmp60 = tmp56 + tmp59;	       tmp106 = tmp56 - (K500000000 * tmp59);	       tmp107 = tmp105 + tmp106;	       tmp125 = tmp106 - tmp105;	  }	  {	       fftw_real tmp45;	       fftw_real tmp48;	       fftw_real tmp88;	       fftw_real tmp91;	       fftw_real tmp61;	       fftw_real tmp64;	       fftw_real tmp89;	       fftw_real tmp92;	       fftw_real tmp50;	       fftw_real tmp53;	       fftw_real tmp95;	       fftw_real tmp98;	       fftw_real tmp66;	       fftw_real tmp69;	       fftw_real tmp96;	       fftw_real tmp99;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp46;		    fftw_real tmp47;		    fftw_real tmp62;		    fftw_real tmp63;		    ASSERT_ALIGNED_DOUBLE;		    tmp45 = X[iostride];		    tmp46 = X[4 * iostride];		    tmp47 = Y[-7 * iostride];		    tmp48 = tmp46 + tmp47;		    tmp88 = tmp45 - (K500000000 * tmp48);		    tmp91 = K866025403 * (tmp46 - tmp47);		    tmp61 = Y[-iostride];		    tmp62 = Y[-4 * iostride];		    tmp63 = X[7 * iostride];		    tmp64 = tmp62 - tmp63;		    tmp89 = K866025403 * (tmp62 + tmp63);		    tmp92 = tmp61 - (K500000000 * tmp64);	       }	       {		    fftw_real tmp51;		    fftw_real tmp52;		    fftw_real tmp67;		    fftw_real tmp68;		    ASSERT_ALIGNED_DOUBLE;		    tmp50 = X[2 * iostride];		    tmp51 = Y[-5 * iostride];		    tmp52 = Y[-8 * iostride];		    tmp53 = tmp51 + tmp52;		    tmp95 = tmp50 - (K500000000 * tmp53);		    tmp98 = K866025403 * (tmp51 - tmp52);		    tmp66 = Y[-2 * iostride];		    tmp67 = X[5 * iostride];		    tmp68 = X[8 * iostride];		    tmp69 = tmp67 + tmp68;		    tmp96 = K866025403 * (tmp67 - tmp68);		    tmp99 = tmp66 + (K500000000 * tmp69);	       }	       tmp49 = tmp45 + tmp48;	       tmp54 = tmp50 + tmp53;	       tmp55 = tmp49 + tmp54;	       {		    fftw_real tmp97;		    fftw_real tmp100;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -