⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fhf_5.c

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 C
字号:
/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Mon Mar 24 02:07:49 EST 2003 */#include "fftw-int.h"#include "fftw.h"/* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -hc2hc-forward 5 *//* * This function contains 64 FP additions, 40 FP multiplications, * (or, 44 additions, 20 multiplications, 20 fused multiply/add), * 27 stack variables, and 40 memory accesses */static const fftw_real K250000000 =FFTW_KONST(+0.250000000000000000000000000000000000000000000);static const fftw_real K559016994 =FFTW_KONST(+0.559016994374947424102293417182819058860154590);static const fftw_real K587785252 =FFTW_KONST(+0.587785252292473129168705954639072768597652438);static const fftw_real K951056516 =FFTW_KONST(+0.951056516295153572116439333379382143405698634);/* * Generator Id's :  * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $ * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ */void fftw_hc2hc_forward_5(fftw_real *A, const fftw_complex *W,			  int iostride, int m, int dist){     int i;     fftw_real *X;     fftw_real *Y;     X = A;     Y = A + (5 * iostride);     {	  fftw_real tmp70;	  fftw_real tmp67;	  fftw_real tmp68;	  fftw_real tmp63;	  fftw_real tmp71;	  fftw_real tmp66;	  fftw_real tmp69;	  fftw_real tmp72;	  ASSERT_ALIGNED_DOUBLE;	  tmp70 = X[0];	  {	       fftw_real tmp61;	       fftw_real tmp62;	       fftw_real tmp64;	       fftw_real tmp65;	       ASSERT_ALIGNED_DOUBLE;	       tmp61 = X[4 * iostride];	       tmp62 = X[iostride];	       tmp67 = tmp61 + tmp62;	       tmp64 = X[2 * iostride];	       tmp65 = X[3 * iostride];	       tmp68 = tmp64 + tmp65;	       tmp63 = tmp61 - tmp62;	       tmp71 = tmp67 + tmp68;	       tmp66 = tmp64 - tmp65;	  }	  Y[-iostride] = (K951056516 * tmp63) - (K587785252 * tmp66);	  Y[-2 * iostride] = (K587785252 * tmp63) + (K951056516 * tmp66);	  X[0] = tmp71 + tmp70;	  tmp69 = K559016994 * (tmp67 - tmp68);	  tmp72 = tmp70 - (K250000000 * tmp71);	  X[iostride] = tmp69 + tmp72;	  X[2 * iostride] = tmp72 - tmp69;     }     X = X + dist;     Y = Y - dist;     for (i = 2; i < m; i = i + 2, X = X + dist, Y = Y - dist, W = W + 4) {	  fftw_real tmp13;	  fftw_real tmp52;	  fftw_real tmp42;	  fftw_real tmp45;	  fftw_real tmp49;	  fftw_real tmp50;	  fftw_real tmp51;	  fftw_real tmp54;	  fftw_real tmp53;	  fftw_real tmp24;	  fftw_real tmp35;	  fftw_real tmp36;	  ASSERT_ALIGNED_DOUBLE;	  tmp13 = X[0];	  tmp52 = Y[-4 * iostride];	  {	       fftw_real tmp18;	       fftw_real tmp40;	       fftw_real tmp34;	       fftw_real tmp44;	       fftw_real tmp23;	       fftw_real tmp41;	       fftw_real tmp29;	       fftw_real tmp43;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp15;		    fftw_real tmp17;		    fftw_real tmp14;		    fftw_real tmp16;		    ASSERT_ALIGNED_DOUBLE;		    tmp15 = X[iostride];		    tmp17 = Y[-3 * iostride];		    tmp14 = c_re(W[0]);		    tmp16 = c_im(W[0]);		    tmp18 = (tmp14 * tmp15) - (tmp16 * tmp17);		    tmp40 = (tmp16 * tmp15) + (tmp14 * tmp17);	       }	       {		    fftw_real tmp31;		    fftw_real tmp33;		    fftw_real tmp30;		    fftw_real tmp32;		    ASSERT_ALIGNED_DOUBLE;		    tmp31 = X[3 * iostride];		    tmp33 = Y[-iostride];		    tmp30 = c_re(W[2]);		    tmp32 = c_im(W[2]);		    tmp34 = (tmp30 * tmp31) - (tmp32 * tmp33);		    tmp44 = (tmp32 * tmp31) + (tmp30 * tmp33);	       }	       {		    fftw_real tmp20;		    fftw_real tmp22;		    fftw_real tmp19;		    fftw_real tmp21;		    ASSERT_ALIGNED_DOUBLE;		    tmp20 = X[4 * iostride];		    tmp22 = Y[0];		    tmp19 = c_re(W[3]);		    tmp21 = c_im(W[3]);		    tmp23 = (tmp19 * tmp20) - (tmp21 * tmp22);		    tmp41 = (tmp21 * tmp20) + (tmp19 * tmp22);	       }	       {		    fftw_real tmp26;		    fftw_real tmp28;		    fftw_real tmp25;		    fftw_real tmp27;		    ASSERT_ALIGNED_DOUBLE;		    tmp26 = X[2 * iostride];		    tmp28 = Y[-2 * iostride];		    tmp25 = c_re(W[1]);		    tmp27 = c_im(W[1]);		    tmp29 = (tmp25 * tmp26) - (tmp27 * tmp28);		    tmp43 = (tmp27 * tmp26) + (tmp25 * tmp28);	       }	       tmp42 = tmp40 - tmp41;	       tmp45 = tmp43 - tmp44;	       tmp49 = tmp40 + tmp41;	       tmp50 = tmp43 + tmp44;	       tmp51 = tmp49 + tmp50;	       tmp54 = tmp29 - tmp34;	       tmp53 = tmp18 - tmp23;	       tmp24 = tmp18 + tmp23;	       tmp35 = tmp29 + tmp34;	       tmp36 = tmp24 + tmp35;	  }	  X[0] = tmp13 + tmp36;	  {	       fftw_real tmp46;	       fftw_real tmp48;	       fftw_real tmp39;	       fftw_real tmp47;	       fftw_real tmp37;	       fftw_real tmp38;	       ASSERT_ALIGNED_DOUBLE;	       tmp46 = (K951056516 * tmp42) + (K587785252 * tmp45);	       tmp48 = (K951056516 * tmp45) - (K587785252 * tmp42);	       tmp37 = K559016994 * (tmp24 - tmp35);	       tmp38 = tmp13 - (K250000000 * tmp36);	       tmp39 = tmp37 + tmp38;	       tmp47 = tmp38 - tmp37;	       Y[-4 * iostride] = tmp39 - tmp46;	       X[iostride] = tmp39 + tmp46;	       X[2 * iostride] = tmp47 - tmp48;	       Y[-3 * iostride] = tmp47 + tmp48;	  }	  Y[0] = tmp51 + tmp52;	  {	       fftw_real tmp55;	       fftw_real tmp60;	       fftw_real tmp58;	       fftw_real tmp59;	       fftw_real tmp56;	       fftw_real tmp57;	       ASSERT_ALIGNED_DOUBLE;	       tmp55 = (K951056516 * tmp53) + (K587785252 * tmp54);	       tmp60 = (K951056516 * tmp54) - (K587785252 * tmp53);	       tmp56 = K559016994 * (tmp49 - tmp50);	       tmp57 = tmp52 - (K250000000 * tmp51);	       tmp58 = tmp56 + tmp57;	       tmp59 = tmp57 - tmp56;	       X[4 * iostride] = -(tmp55 + tmp58);	       Y[-iostride] = tmp58 - tmp55;	       X[3 * iostride] = -(tmp59 - tmp60);	       Y[-2 * iostride] = tmp60 + tmp59;	  }     }     if (i == m) {	  fftw_real tmp10;	  fftw_real tmp7;	  fftw_real tmp8;	  fftw_real tmp3;	  fftw_real tmp11;	  fftw_real tmp6;	  fftw_real tmp9;	  fftw_real tmp12;	  ASSERT_ALIGNED_DOUBLE;	  tmp10 = X[0];	  {	       fftw_real tmp1;	       fftw_real tmp2;	       fftw_real tmp4;	       fftw_real tmp5;	       ASSERT_ALIGNED_DOUBLE;	       tmp1 = X[2 * iostride];	       tmp2 = X[3 * iostride];	       tmp7 = tmp1 - tmp2;	       tmp4 = X[4 * iostride];	       tmp5 = X[iostride];	       tmp8 = tmp4 - tmp5;	       tmp3 = tmp1 + tmp2;	       tmp11 = tmp7 + tmp8;	       tmp6 = tmp4 + tmp5;	  }	  Y[0] = -((K951056516 * tmp3) + (K587785252 * tmp6));	  Y[-iostride] = -((K951056516 * tmp6) - (K587785252 * tmp3));	  X[2 * iostride] = tmp11 + tmp10;	  tmp9 = K559016994 * (tmp7 - tmp8);	  tmp12 = tmp10 - (K250000000 * tmp11);	  X[0] = tmp9 + tmp12;	  X[iostride] = tmp12 - tmp9;     }}static const int twiddle_order[] = { 1, 2, 3, 4 };fftw_codelet_desc fftw_hc2hc_forward_5_desc = {     "fftw_hc2hc_forward_5",     (void (*)()) fftw_hc2hc_forward_5,     5,     FFTW_FORWARD,     FFTW_HC2HC,     113,     4,     twiddle_order,};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -