⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fhb_7.c

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 C
字号:
/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Mon Mar 24 02:08:54 EST 2003 */#include "fftw-int.h"#include "fftw.h"/* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -hc2hc-backward 7 *//* * This function contains 120 FP additions, 98 FP multiplications, * (or, 106 additions, 84 multiplications, 14 fused multiply/add), * 32 stack variables, and 56 memory accesses */static const fftw_real K222520933 =FFTW_KONST(+0.222520933956314404288902564496794759466355569);static const fftw_real K900968867 =FFTW_KONST(+0.900968867902419126236102319507445051165919162);static const fftw_real K623489801 =FFTW_KONST(+0.623489801858733530525004884004239810632274731);static const fftw_real K781831482 =FFTW_KONST(+0.781831482468029808708444526674057750232334519);static const fftw_real K974927912 =FFTW_KONST(+0.974927912181823607018131682993931217232785801);static const fftw_real K433883739 =FFTW_KONST(+0.433883739117558120475768332848358754609990728);static const fftw_real K2_000000000 =FFTW_KONST(+2.000000000000000000000000000000000000000000000);static const fftw_real K1_801937735 =FFTW_KONST(+1.801937735804838252472204639014890102331838324);static const fftw_real K445041867 =FFTW_KONST(+0.445041867912628808577805128993589518932711138);static const fftw_real K1_246979603 =FFTW_KONST(+1.246979603717467061050009768008479621264549462);static const fftw_real K867767478 =FFTW_KONST(+0.867767478235116240951536665696717509219981456);static const fftw_real K1_949855824 =FFTW_KONST(+1.949855824363647214036263365987862434465571601);static const fftw_real K1_563662964 =FFTW_KONST(+1.563662964936059617416889053348115500464669037);/* * Generator Id's :  * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $ * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ */void fftw_hc2hc_backward_7(fftw_real *A, const fftw_complex *W,			   int iostride, int m, int dist){     int i;     fftw_real *X;     fftw_real *Y;     X = A;     Y = A + (7 * iostride);     {	  fftw_real tmp84;	  fftw_real tmp88;	  fftw_real tmp86;	  fftw_real tmp76;	  fftw_real tmp79;	  fftw_real tmp77;	  fftw_real tmp78;	  fftw_real tmp80;	  fftw_real tmp87;	  fftw_real tmp85;	  fftw_real tmp81;	  fftw_real tmp83;	  fftw_real tmp82;	  ASSERT_ALIGNED_DOUBLE;	  tmp81 = Y[-2 * iostride];	  tmp83 = Y[-iostride];	  tmp82 = Y[-3 * iostride];	  tmp84 =	      (K1_563662964 * tmp81) - (K1_949855824 * tmp82) -	      (K867767478 * tmp83);	  tmp88 =	      (K867767478 * tmp81) + (K1_563662964 * tmp82) -	      (K1_949855824 * tmp83);	  tmp86 =	      (K1_563662964 * tmp83) + (K1_949855824 * tmp81) +	      (K867767478 * tmp82);	  tmp76 = X[0];	  tmp79 = X[3 * iostride];	  tmp77 = X[iostride];	  tmp78 = X[2 * iostride];	  tmp80 =	      tmp76 + (K1_246979603 * tmp78) - (K445041867 * tmp79) -	      (K1_801937735 * tmp77);	  tmp87 =	      tmp76 + (K1_246979603 * tmp79) - (K1_801937735 * tmp78) -	      (K445041867 * tmp77);	  tmp85 =	      tmp76 + (K1_246979603 * tmp77) - (K1_801937735 * tmp79) -	      (K445041867 * tmp78);	  X[4 * iostride] = tmp80 - tmp84;	  X[3 * iostride] = tmp80 + tmp84;	  X[0] = tmp76 + (K2_000000000 * (tmp77 + tmp78 + tmp79));	  X[2 * iostride] = tmp87 + tmp88;	  X[5 * iostride] = tmp87 - tmp88;	  X[iostride] = tmp85 - tmp86;	  X[6 * iostride] = tmp85 + tmp86;     }     X = X + dist;     Y = Y - dist;     for (i = 2; i < m; i = i + 2, X = X + dist, Y = Y - dist, W = W + 6) {	  fftw_real tmp14;	  fftw_real tmp23;	  fftw_real tmp17;	  fftw_real tmp20;	  fftw_real tmp39;	  fftw_real tmp53;	  fftw_real tmp66;	  fftw_real tmp69;	  fftw_real tmp57;	  fftw_real tmp42;	  fftw_real tmp24;	  fftw_real tmp33;	  fftw_real tmp27;	  fftw_real tmp30;	  fftw_real tmp46;	  fftw_real tmp58;	  fftw_real tmp70;	  fftw_real tmp65;	  fftw_real tmp54;	  fftw_real tmp35;	  ASSERT_ALIGNED_DOUBLE;	  {	       fftw_real tmp37;	       fftw_real tmp36;	       fftw_real tmp38;	       fftw_real tmp21;	       fftw_real tmp22;	       ASSERT_ALIGNED_DOUBLE;	       tmp14 = X[0];	       tmp21 = X[3 * iostride];	       tmp22 = Y[-4 * iostride];	       tmp23 = tmp21 + tmp22;	       tmp37 = tmp21 - tmp22;	       {		    fftw_real tmp15;		    fftw_real tmp16;		    fftw_real tmp18;		    fftw_real tmp19;		    ASSERT_ALIGNED_DOUBLE;		    tmp15 = X[iostride];		    tmp16 = Y[-6 * iostride];		    tmp17 = tmp15 + tmp16;		    tmp36 = tmp15 - tmp16;		    tmp18 = X[2 * iostride];		    tmp19 = Y[-5 * iostride];		    tmp20 = tmp18 + tmp19;		    tmp38 = tmp18 - tmp19;	       }	       tmp39 =		   (K433883739 * tmp36) + (K974927912 * tmp37) -		   (K781831482 * tmp38);	       tmp53 =		   (K781831482 * tmp36) + (K974927912 * tmp38) +		   (K433883739 * tmp37);	       tmp66 =		   (K974927912 * tmp36) - (K781831482 * tmp37) -		   (K433883739 * tmp38);	       tmp69 =		   tmp14 + (K623489801 * tmp23) - (K900968867 * tmp20) -		   (K222520933 * tmp17);	       tmp57 =		   tmp14 + (K623489801 * tmp17) - (K900968867 * tmp23) -		   (K222520933 * tmp20);	       tmp42 =		   tmp14 + (K623489801 * tmp20) - (K222520933 * tmp23) -		   (K900968867 * tmp17);	  }	  {	       fftw_real tmp44;	       fftw_real tmp45;	       fftw_real tmp43;	       fftw_real tmp31;	       fftw_real tmp32;	       ASSERT_ALIGNED_DOUBLE;	       tmp24 = Y[0];	       tmp31 = Y[-3 * iostride];	       tmp32 = X[4 * iostride];	       tmp33 = tmp31 - tmp32;	       tmp44 = tmp31 + tmp32;	       {		    fftw_real tmp25;		    fftw_real tmp26;		    fftw_real tmp28;		    fftw_real tmp29;		    ASSERT_ALIGNED_DOUBLE;		    tmp25 = Y[-iostride];		    tmp26 = X[6 * iostride];		    tmp27 = tmp25 - tmp26;		    tmp45 = tmp25 + tmp26;		    tmp28 = Y[-2 * iostride];		    tmp29 = X[5 * iostride];		    tmp30 = tmp28 - tmp29;		    tmp43 = tmp28 + tmp29;	       }	       tmp46 =		   (K781831482 * tmp43) - (K974927912 * tmp44) -		   (K433883739 * tmp45);	       tmp58 =		   (K781831482 * tmp45) + (K974927912 * tmp43) +		   (K433883739 * tmp44);	       tmp70 =		   (K433883739 * tmp43) + (K781831482 * tmp44) -		   (K974927912 * tmp45);	       tmp65 =		   tmp24 + (K623489801 * tmp33) - (K900968867 * tmp30) -		   (K222520933 * tmp27);	       tmp54 =		   tmp24 + (K623489801 * tmp27) - (K900968867 * tmp33) -		   (K222520933 * tmp30);	       tmp35 =		   tmp24 + (K623489801 * tmp30) - (K222520933 * tmp33) -		   (K900968867 * tmp27);	  }	  X[0] = tmp14 + tmp17 + tmp20 + tmp23;	  {	       fftw_real tmp61;	       fftw_real tmp63;	       fftw_real tmp60;	       fftw_real tmp62;	       ASSERT_ALIGNED_DOUBLE;	       tmp61 = tmp54 - tmp53;	       tmp63 = tmp57 + tmp58;	       tmp60 = c_re(W[5]);	       tmp62 = c_im(W[5]);	       Y[0] = (tmp60 * tmp61) - (tmp62 * tmp63);	       X[6 * iostride] = (tmp62 * tmp61) + (tmp60 * tmp63);	  }	  {	       fftw_real tmp73;	       fftw_real tmp75;	       fftw_real tmp72;	       fftw_real tmp74;	       ASSERT_ALIGNED_DOUBLE;	       tmp73 = tmp66 + tmp65;	       tmp75 = tmp69 + tmp70;	       tmp72 = c_re(W[1]);	       tmp74 = c_im(W[1]);	       Y[-4 * iostride] = (tmp72 * tmp73) - (tmp74 * tmp75);	       X[2 * iostride] = (tmp74 * tmp73) + (tmp72 * tmp75);	  }	  {	       fftw_real tmp67;	       fftw_real tmp71;	       fftw_real tmp64;	       fftw_real tmp68;	       ASSERT_ALIGNED_DOUBLE;	       tmp67 = tmp65 - tmp66;	       tmp71 = tmp69 - tmp70;	       tmp64 = c_re(W[4]);	       tmp68 = c_im(W[4]);	       Y[-iostride] = (tmp64 * tmp67) - (tmp68 * tmp71);	       X[5 * iostride] = (tmp68 * tmp67) + (tmp64 * tmp71);	  }	  Y[-6 * iostride] = tmp24 + tmp27 + tmp30 + tmp33;	  {	       fftw_real tmp40;	       fftw_real tmp47;	       fftw_real tmp34;	       fftw_real tmp41;	       ASSERT_ALIGNED_DOUBLE;	       tmp40 = tmp35 - tmp39;	       tmp47 = tmp42 - tmp46;	       tmp34 = c_re(W[3]);	       tmp41 = c_im(W[3]);	       Y[-2 * iostride] = (tmp34 * tmp40) - (tmp41 * tmp47);	       X[4 * iostride] = (tmp41 * tmp40) + (tmp34 * tmp47);	  }	  {	       fftw_real tmp49;	       fftw_real tmp51;	       fftw_real tmp48;	       fftw_real tmp50;	       ASSERT_ALIGNED_DOUBLE;	       tmp49 = tmp39 + tmp35;	       tmp51 = tmp42 + tmp46;	       tmp48 = c_re(W[2]);	       tmp50 = c_im(W[2]);	       Y[-3 * iostride] = (tmp48 * tmp49) - (tmp50 * tmp51);	       X[3 * iostride] = (tmp50 * tmp49) + (tmp48 * tmp51);	  }	  {	       fftw_real tmp55;	       fftw_real tmp59;	       fftw_real tmp52;	       fftw_real tmp56;	       ASSERT_ALIGNED_DOUBLE;	       tmp55 = tmp53 + tmp54;	       tmp59 = tmp57 - tmp58;	       tmp52 = c_re(W[0]);	       tmp56 = c_im(W[0]);	       Y[-5 * iostride] = (tmp52 * tmp55) - (tmp56 * tmp59);	       X[iostride] = (tmp56 * tmp55) + (tmp52 * tmp59);	  }     }     if (i == m) {	  fftw_real tmp9;	  fftw_real tmp13;	  fftw_real tmp11;	  fftw_real tmp1;	  fftw_real tmp4;	  fftw_real tmp2;	  fftw_real tmp3;	  fftw_real tmp5;	  fftw_real tmp12;	  fftw_real tmp10;	  fftw_real tmp6;	  fftw_real tmp8;	  fftw_real tmp7;	  ASSERT_ALIGNED_DOUBLE;	  tmp6 = Y[-2 * iostride];	  tmp8 = Y[0];	  tmp7 = Y[-iostride];	  tmp9 =	      (K1_563662964 * tmp6) + (K1_949855824 * tmp7) +	      (K867767478 * tmp8);	  tmp13 =	      (K1_563662964 * tmp7) - (K1_949855824 * tmp8) -	      (K867767478 * tmp6);	  tmp11 =	      (K1_949855824 * tmp6) - (K1_563662964 * tmp8) -	      (K867767478 * tmp7);	  tmp1 = X[3 * iostride];	  tmp4 = X[0];	  tmp2 = X[2 * iostride];	  tmp3 = X[iostride];	  tmp5 =	      (K445041867 * tmp3) + (K1_801937735 * tmp4) -	      (K1_246979603 * tmp2) - tmp1;	  tmp12 =	      (K1_801937735 * tmp2) + (K445041867 * tmp4) -	      (K1_246979603 * tmp3) - tmp1;	  tmp10 =	      tmp1 + (K1_246979603 * tmp4) - (K1_801937735 * tmp3) -	      (K445041867 * tmp2);	  X[iostride] = tmp5 - tmp9;	  X[6 * iostride] = -(tmp5 + tmp9);	  X[0] = tmp1 + (K2_000000000 * (tmp2 + tmp3 + tmp4));	  X[4 * iostride] = tmp13 - tmp12;	  X[3 * iostride] = tmp12 + tmp13;	  X[5 * iostride] = tmp11 - tmp10;	  X[2 * iostride] = tmp10 + tmp11;     }}static const int twiddle_order[] = { 1, 2, 3, 4, 5, 6 };fftw_codelet_desc fftw_hc2hc_backward_7_desc = {     "fftw_hc2hc_backward_7",     (void (*)()) fftw_hc2hc_backward_7,     7,     FFTW_BACKWARD,     FFTW_HC2HC,     168,     6,     twiddle_order,};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -