⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fhf_8.c

📁 FFTW, a collection of fast C routines to compute the Discrete Fourier Transform in one or more dime
💻 C
字号:
/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Mon Mar 24 02:08:02 EST 2003 */#include "fftw-int.h"#include "fftw.h"/* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -hc2hc-forward 8 *//* * This function contains 108 FP additions, 44 FP multiplications, * (or, 90 additions, 26 multiplications, 18 fused multiply/add), * 29 stack variables, and 64 memory accesses */static const fftw_real K382683432 =FFTW_KONST(+0.382683432365089771728459984030398866761344562);static const fftw_real K923879532 =FFTW_KONST(+0.923879532511286756128183189396788286822416626);static const fftw_real K707106781 =FFTW_KONST(+0.707106781186547524400844362104849039284835938);/* * Generator Id's :  * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $ * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ */void fftw_hc2hc_forward_8(fftw_real *A, const fftw_complex *W,			  int iostride, int m, int dist){     int i;     fftw_real *X;     fftw_real *Y;     X = A;     Y = A + (8 * iostride);     {	  fftw_real tmp105;	  fftw_real tmp109;	  fftw_real tmp115;	  fftw_real tmp121;	  fftw_real tmp108;	  fftw_real tmp118;	  fftw_real tmp112;	  fftw_real tmp120;	  ASSERT_ALIGNED_DOUBLE;	  {	       fftw_real tmp103;	       fftw_real tmp104;	       fftw_real tmp113;	       fftw_real tmp114;	       ASSERT_ALIGNED_DOUBLE;	       tmp103 = X[0];	       tmp104 = X[4 * iostride];	       tmp105 = tmp103 + tmp104;	       tmp109 = tmp103 - tmp104;	       tmp113 = X[7 * iostride];	       tmp114 = X[3 * iostride];	       tmp115 = tmp113 - tmp114;	       tmp121 = tmp113 + tmp114;	  }	  {	       fftw_real tmp106;	       fftw_real tmp107;	       fftw_real tmp110;	       fftw_real tmp111;	       ASSERT_ALIGNED_DOUBLE;	       tmp106 = X[2 * iostride];	       tmp107 = X[6 * iostride];	       tmp108 = tmp106 + tmp107;	       tmp118 = tmp106 - tmp107;	       tmp110 = X[iostride];	       tmp111 = X[5 * iostride];	       tmp112 = tmp110 - tmp111;	       tmp120 = tmp110 + tmp111;	  }	  {	       fftw_real tmp119;	       fftw_real tmp122;	       fftw_real tmp116;	       fftw_real tmp117;	       ASSERT_ALIGNED_DOUBLE;	       X[2 * iostride] = tmp105 - tmp108;	       tmp119 = tmp105 + tmp108;	       tmp122 = tmp120 + tmp121;	       X[4 * iostride] = tmp119 - tmp122;	       X[0] = tmp119 + tmp122;	       Y[-2 * iostride] = tmp121 - tmp120;	       tmp116 = K707106781 * (tmp112 + tmp115);	       X[3 * iostride] = tmp109 - tmp116;	       X[iostride] = tmp109 + tmp116;	       tmp117 = K707106781 * (tmp115 - tmp112);	       Y[-iostride] = tmp117 - tmp118;	       Y[-3 * iostride] = tmp118 + tmp117;	  }     }     X = X + dist;     Y = Y - dist;     for (i = 2; i < m; i = i + 2, X = X + dist, Y = Y - dist, W = W + 7) {	  fftw_real tmp29;	  fftw_real tmp65;	  fftw_real tmp92;	  fftw_real tmp97;	  fftw_real tmp63;	  fftw_real tmp75;	  fftw_real tmp78;	  fftw_real tmp87;	  fftw_real tmp40;	  fftw_real tmp98;	  fftw_real tmp68;	  fftw_real tmp89;	  fftw_real tmp52;	  fftw_real tmp70;	  fftw_real tmp73;	  fftw_real tmp86;	  ASSERT_ALIGNED_DOUBLE;	  {	       fftw_real tmp23;	       fftw_real tmp91;	       fftw_real tmp28;	       fftw_real tmp90;	       ASSERT_ALIGNED_DOUBLE;	       tmp23 = X[0];	       tmp91 = Y[-7 * iostride];	       {		    fftw_real tmp25;		    fftw_real tmp27;		    fftw_real tmp24;		    fftw_real tmp26;		    ASSERT_ALIGNED_DOUBLE;		    tmp25 = X[4 * iostride];		    tmp27 = Y[-3 * iostride];		    tmp24 = c_re(W[3]);		    tmp26 = c_im(W[3]);		    tmp28 = (tmp24 * tmp25) - (tmp26 * tmp27);		    tmp90 = (tmp26 * tmp25) + (tmp24 * tmp27);	       }	       tmp29 = tmp23 + tmp28;	       tmp65 = tmp23 - tmp28;	       tmp92 = tmp90 + tmp91;	       tmp97 = tmp91 - tmp90;	  }	  {	       fftw_real tmp57;	       fftw_real tmp76;	       fftw_real tmp62;	       fftw_real tmp77;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp54;		    fftw_real tmp56;		    fftw_real tmp53;		    fftw_real tmp55;		    ASSERT_ALIGNED_DOUBLE;		    tmp54 = X[7 * iostride];		    tmp56 = Y[0];		    tmp53 = c_re(W[6]);		    tmp55 = c_im(W[6]);		    tmp57 = (tmp53 * tmp54) - (tmp55 * tmp56);		    tmp76 = (tmp55 * tmp54) + (tmp53 * tmp56);	       }	       {		    fftw_real tmp59;		    fftw_real tmp61;		    fftw_real tmp58;		    fftw_real tmp60;		    ASSERT_ALIGNED_DOUBLE;		    tmp59 = X[3 * iostride];		    tmp61 = Y[-4 * iostride];		    tmp58 = c_re(W[2]);		    tmp60 = c_im(W[2]);		    tmp62 = (tmp58 * tmp59) - (tmp60 * tmp61);		    tmp77 = (tmp60 * tmp59) + (tmp58 * tmp61);	       }	       tmp63 = tmp57 + tmp62;	       tmp75 = tmp57 - tmp62;	       tmp78 = tmp76 - tmp77;	       tmp87 = tmp76 + tmp77;	  }	  {	       fftw_real tmp34;	       fftw_real tmp66;	       fftw_real tmp39;	       fftw_real tmp67;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp31;		    fftw_real tmp33;		    fftw_real tmp30;		    fftw_real tmp32;		    ASSERT_ALIGNED_DOUBLE;		    tmp31 = X[2 * iostride];		    tmp33 = Y[-5 * iostride];		    tmp30 = c_re(W[1]);		    tmp32 = c_im(W[1]);		    tmp34 = (tmp30 * tmp31) - (tmp32 * tmp33);		    tmp66 = (tmp32 * tmp31) + (tmp30 * tmp33);	       }	       {		    fftw_real tmp36;		    fftw_real tmp38;		    fftw_real tmp35;		    fftw_real tmp37;		    ASSERT_ALIGNED_DOUBLE;		    tmp36 = X[6 * iostride];		    tmp38 = Y[-iostride];		    tmp35 = c_re(W[5]);		    tmp37 = c_im(W[5]);		    tmp39 = (tmp35 * tmp36) - (tmp37 * tmp38);		    tmp67 = (tmp37 * tmp36) + (tmp35 * tmp38);	       }	       tmp40 = tmp34 + tmp39;	       tmp98 = tmp34 - tmp39;	       tmp68 = tmp66 - tmp67;	       tmp89 = tmp66 + tmp67;	  }	  {	       fftw_real tmp46;	       fftw_real tmp71;	       fftw_real tmp51;	       fftw_real tmp72;	       ASSERT_ALIGNED_DOUBLE;	       {		    fftw_real tmp43;		    fftw_real tmp45;		    fftw_real tmp42;		    fftw_real tmp44;		    ASSERT_ALIGNED_DOUBLE;		    tmp43 = X[iostride];		    tmp45 = Y[-6 * iostride];		    tmp42 = c_re(W[0]);		    tmp44 = c_im(W[0]);		    tmp46 = (tmp42 * tmp43) - (tmp44 * tmp45);		    tmp71 = (tmp44 * tmp43) + (tmp42 * tmp45);	       }	       {		    fftw_real tmp48;		    fftw_real tmp50;		    fftw_real tmp47;		    fftw_real tmp49;		    ASSERT_ALIGNED_DOUBLE;		    tmp48 = X[5 * iostride];		    tmp50 = Y[-2 * iostride];		    tmp47 = c_re(W[4]);		    tmp49 = c_im(W[4]);		    tmp51 = (tmp47 * tmp48) - (tmp49 * tmp50);		    tmp72 = (tmp49 * tmp48) + (tmp47 * tmp50);	       }	       tmp52 = tmp46 + tmp51;	       tmp70 = tmp46 - tmp51;	       tmp73 = tmp71 - tmp72;	       tmp86 = tmp71 + tmp72;	  }	  {	       fftw_real tmp41;	       fftw_real tmp64;	       fftw_real tmp85;	       fftw_real tmp88;	       ASSERT_ALIGNED_DOUBLE;	       tmp41 = tmp29 + tmp40;	       tmp64 = tmp52 + tmp63;	       Y[-4 * iostride] = tmp41 - tmp64;	       X[0] = tmp41 + tmp64;	       {		    fftw_real tmp95;		    fftw_real tmp96;		    fftw_real tmp93;		    fftw_real tmp94;		    ASSERT_ALIGNED_DOUBLE;		    tmp95 = tmp92 - tmp89;		    tmp96 = tmp63 - tmp52;		    X[6 * iostride] = -(tmp95 - tmp96);		    Y[-2 * iostride] = tmp96 + tmp95;		    tmp93 = tmp89 + tmp92;		    tmp94 = tmp86 + tmp87;		    X[4 * iostride] = -(tmp93 - tmp94);		    Y[0] = tmp94 + tmp93;	       }	       tmp85 = tmp29 - tmp40;	       tmp88 = tmp86 - tmp87;	       Y[-6 * iostride] = tmp85 - tmp88;	       X[2 * iostride] = tmp85 + tmp88;	       {		    fftw_real tmp81;		    fftw_real tmp99;		    fftw_real tmp84;		    fftw_real tmp100;		    fftw_real tmp82;		    fftw_real tmp83;		    ASSERT_ALIGNED_DOUBLE;		    tmp81 = tmp65 - tmp68;		    tmp99 = tmp97 - tmp98;		    tmp82 = tmp73 - tmp70;		    tmp83 = tmp75 + tmp78;		    tmp84 = K707106781 * (tmp82 - tmp83);		    tmp100 = K707106781 * (tmp82 + tmp83);		    Y[-7 * iostride] = tmp81 - tmp84;		    X[3 * iostride] = tmp81 + tmp84;		    X[5 * iostride] = -(tmp99 - tmp100);		    Y[-iostride] = tmp100 + tmp99;	       }	       {		    fftw_real tmp69;		    fftw_real tmp101;		    fftw_real tmp80;		    fftw_real tmp102;		    fftw_real tmp74;		    fftw_real tmp79;		    ASSERT_ALIGNED_DOUBLE;		    tmp69 = tmp65 + tmp68;		    tmp101 = tmp98 + tmp97;		    tmp74 = tmp70 + tmp73;		    tmp79 = tmp75 - tmp78;		    tmp80 = K707106781 * (tmp74 + tmp79);		    tmp102 = K707106781 * (tmp79 - tmp74);		    Y[-5 * iostride] = tmp69 - tmp80;		    X[iostride] = tmp69 + tmp80;		    X[7 * iostride] = -(tmp101 - tmp102);		    Y[-3 * iostride] = tmp102 + tmp101;	       }	  }     }     if (i == m) {	  fftw_real tmp1;	  fftw_real tmp19;	  fftw_real tmp4;	  fftw_real tmp18;	  fftw_real tmp8;	  fftw_real tmp14;	  fftw_real tmp11;	  fftw_real tmp15;	  fftw_real tmp2;	  fftw_real tmp3;	  ASSERT_ALIGNED_DOUBLE;	  tmp1 = X[0];	  tmp19 = X[4 * iostride];	  tmp2 = X[2 * iostride];	  tmp3 = X[6 * iostride];	  tmp4 = K707106781 * (tmp2 - tmp3);	  tmp18 = K707106781 * (tmp2 + tmp3);	  {	       fftw_real tmp6;	       fftw_real tmp7;	       fftw_real tmp9;	       fftw_real tmp10;	       ASSERT_ALIGNED_DOUBLE;	       tmp6 = X[iostride];	       tmp7 = X[5 * iostride];	       tmp8 = (K923879532 * tmp6) - (K382683432 * tmp7);	       tmp14 = (K382683432 * tmp6) + (K923879532 * tmp7);	       tmp9 = X[3 * iostride];	       tmp10 = X[7 * iostride];	       tmp11 = (K382683432 * tmp9) - (K923879532 * tmp10);	       tmp15 = (K923879532 * tmp9) + (K382683432 * tmp10);	  }	  {	       fftw_real tmp5;	       fftw_real tmp12;	       fftw_real tmp21;	       fftw_real tmp22;	       ASSERT_ALIGNED_DOUBLE;	       tmp5 = tmp1 + tmp4;	       tmp12 = tmp8 + tmp11;	       X[3 * iostride] = tmp5 - tmp12;	       X[0] = tmp5 + tmp12;	       tmp21 = tmp11 - tmp8;	       tmp22 = tmp19 - tmp18;	       Y[-2 * iostride] = tmp21 - tmp22;	       Y[-iostride] = tmp21 + tmp22;	  }	  {	       fftw_real tmp17;	       fftw_real tmp20;	       fftw_real tmp13;	       fftw_real tmp16;	       ASSERT_ALIGNED_DOUBLE;	       tmp17 = tmp14 + tmp15;	       tmp20 = tmp18 + tmp19;	       Y[0] = -(tmp17 + tmp20);	       Y[-3 * iostride] = tmp20 - tmp17;	       tmp13 = tmp1 - tmp4;	       tmp16 = tmp14 - tmp15;	       X[2 * iostride] = tmp13 - tmp16;	       X[iostride] = tmp13 + tmp16;	  }     }}static const int twiddle_order[] = { 1, 2, 3, 4, 5, 6, 7 };fftw_codelet_desc fftw_hc2hc_forward_8_desc = {     "fftw_hc2hc_forward_8",     (void (*)()) fftw_hc2hc_forward_8,     8,     FFTW_FORWARD,     FFTW_HC2HC,     179,     7,     twiddle_order,};

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -