⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 iprime.c

📁 samba最新软件
💻 C
字号:
/*  Name:     iprime.c  Purpose:  Pseudoprimality testing routines  Author:   M. J. Fromberger <http://www.dartmouth.edu/~sting/>  Info:     $Id: iprime.c 19737 2007-01-05 21:01:48Z lha $  Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.  Permission is hereby granted, free of charge, to any person  obtaining a copy of this software and associated documentation files  (the "Software"), to deal in the Software without restriction,  including without limitation the rights to use, copy, modify, merge,  publish, distribute, sublicense, and/or sell copies of the Software,  and to permit persons to whom the Software is furnished to do so,  subject to the following conditions:  The above copyright notice and this permission notice shall be  included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND  NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS  BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN  ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN  CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE  SOFTWARE. */#include "iprime.h"#include <stdlib.h>static const int s_ptab[] = {    3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,    47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,    103, 107, 109, 113, 127, 131, 137, 139, 149, 151,    157, 163, 167, 173, 179, 181, 191, 193, 197, 199,    211, 223, 227, 229, 233, 239, 241, 251, 257, 263,    269, 271, 277, 281, 283, 293, 307, 311, 313, 317,    331, 337, 347, 349, 353, 359, 367, 373, 379, 383,    389, 397, 401, 409, 419, 421, 431, 433, 439, 443,    449, 457, 461, 463, 467, 479, 487, 491, 499, 503,    509, 521, 523, 541, 547, 557, 563, 569, 571, 577,    587, 593, 599, 601, 607, 613, 617, 619, 631, 641,    643, 647, 653, 659, 661, 673, 677, 683, 691, 701,    709, 719, 727, 733, 739, 743, 751, 757, 761, 769,    773, 787, 797, 809, 811, 821, 823, 827, 829, 839,    853, 857, 859, 863, 877, 881, 883, 887, 907, 911,    919, 929, 937, 941, 947, 953, 967, 971, 977, 983,    991, 997, 1009, 1013, 1019, 1021, 1031, 1033,    1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,    1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,    1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,    1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,    1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,    1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,    1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,    1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,    1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,    1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,    1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667,    1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,    1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,    1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,    1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,    1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,    1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,    2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,    2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,    2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,    2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,    2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,    2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411,    2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,    2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,    2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633,    2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,    2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,    2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,    2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,    2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,    2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,    3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,    3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,    3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,    3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,    3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,    3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391,    3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,    3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,    3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583,    3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,    3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,    3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779,    3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,    3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,    3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,    4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049,    4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,    4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,    4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,    4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,    4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391,    4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,    4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,    4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597,    4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,    4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,    4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799,    4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,    4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,    4957, 4967, 4969, 4973, 4987, 4993, 4999};static const int s_ptab_size = sizeof(s_ptab)/sizeof(s_ptab[0]);/* {{{ mp_int_is_prime(z) *//* Test whether z is likely to be prime:   MP_TRUE  means it is probably prime   MP_FALSE means it is definitely composite */mp_result mp_int_is_prime(mp_int z){  int       i, rem;  mp_result res;  /* First check for divisibility by small primes; this eliminates a     large number of composite candidates quickly   */  for(i = 0; i < s_ptab_size; ++i) {    if((res = mp_int_div_value(z, s_ptab[i], NULL, &rem)) != MP_OK)      return res;    if(rem == 0)      return MP_FALSE;  }  /* Now try Fermat's test for several prime witnesses (since we now     know from the above that z is not a multiple of any of them)   */  {    mpz_t  tmp;    if((res = mp_int_init(&tmp)) != MP_OK) return res;    for(i = 0; i < 10 && i < s_ptab_size; ++i) {      if((res = mp_int_exptmod_bvalue(s_ptab[i], z, z, &tmp)) != MP_OK)	return res;      if(mp_int_compare_value(&tmp, s_ptab[i]) != 0) {	mp_int_clear(&tmp);	return MP_FALSE;      }    }    mp_int_clear(&tmp);  }  return MP_TRUE;}/* }}} *//* {{{ mp_int_find_prime(z) *//* Find the first apparent prime in ascending order from z */mp_result mp_int_find_prime(mp_int z){  mp_result  res;  if(mp_int_is_even(z) && ((res = mp_int_add_value(z, 1, z)) != MP_OK))    return res;  while((res = mp_int_is_prime(z)) == MP_FALSE) {    if((res = mp_int_add_value(z, 2, z)) != MP_OK)      break;  }  return res;}/* }}} *//* Here there be dragons */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -