📄 rfc4514.txt
字号:
Network Working Group K. Zeilenga, Ed.Request for Comments: 4514 OpenLDAP FoundationObsoletes: 2253 June 2006Category: Standards Track Lightweight Directory Access Protocol (LDAP): String Representation of Distinguished NamesStatus of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2006).Abstract The X.500 Directory uses distinguished names (DNs) as primary keys to entries in the directory. This document defines the string representation used in the Lightweight Directory Access Protocol (LDAP) to transfer distinguished names. The string representation is designed to give a clean representation of commonly used distinguished names, while being able to represent any distinguished name.1. Background and Intended Usage In X.500-based directory systems [X.500], including those accessed using the Lightweight Directory Access Protocol (LDAP) [RFC4510], distinguished names (DNs) are used to unambiguously refer to directory entries [X.501][RFC4512]. The structure of a DN [X.501] is described in terms of ASN.1 [X.680]. In the X.500 Directory Access Protocol [X.511] (and other ITU-defined directory protocols), DNs are encoded using the Basic Encoding Rules (BER) [X.690]. In LDAP, DNs are represented in the string form described in this document. It is important to have a common format to be able to unambiguously represent a distinguished name. The primary goal of this specification is ease of encoding and decoding. A secondary goal is to have names that are human readable. It is not expected that LDAPZeilenga Standards Track [Page 1]RFC 4514 LDAP: Distinguished Names June 2006 implementations with a human user interface would display these strings directly to the user, but that they would most likely be performing translations (such as expressing attribute type names in the local national language). This document defines the string representation of Distinguished Names used in LDAP [RFC4511][RFC4517]. Section 2 details the RECOMMENDED algorithm for converting a DN from its ASN.1 structured representation to a string. Section 3 details how to convert a DN from a string to an ASN.1 structured representation. While other documents may define other algorithms for converting a DN from its ASN.1 structured representation to a string, all algorithms MUST produce strings that adhere to the requirements of Section 3. This document does not define a canonical string representation for DNs. Comparison of DNs for equality is to be performed in accordance with the distinguishedNameMatch matching rule [RFC4517]. This document is a integral part of the LDAP technical specification [RFC4510], which obsoletes the previously defined LDAP technical specification, RFC 3377, in its entirety. This document obsoletes RFC 2253. Changes since RFC 2253 are summarized in Appendix B. This specification assumes familiarity with X.500 [X.500] and the concept of Distinguished Name [X.501][RFC4512].1.1. Conventions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119]. Character names in this document use the notation for code points and names from the Unicode Standard [Unicode]. For example, the letter "a" may be represented as either <U+0061> or <LATIN SMALL LETTER A>. Note: a glossary of terms used in Unicode can be found in [Glossary]. Information on the Unicode character encoding model can be found in [CharModel].Zeilenga Standards Track [Page 2]RFC 4514 LDAP: Distinguished Names June 20062. Converting DistinguishedName from ASN.1 to a String X.501 [X.501] defines the ASN.1 [X.680] structure of distinguished name. The following is a variant provided for discussion purposes. DistinguishedName ::= RDNSequence RDNSequence ::= SEQUENCE OF RelativeDistinguishedName RelativeDistinguishedName ::= SET SIZE (1..MAX) OF AttributeTypeAndValue AttributeTypeAndValue ::= SEQUENCE { type AttributeType, value AttributeValue } This section defines the RECOMMENDED algorithm for converting a distinguished name from an ASN.1-structured representation to a UTF-8 [RFC3629] encoded Unicode [Unicode] character string representation. Other documents may describe other algorithms for converting a distinguished name to a string, but only strings that conform to the grammar defined in Section 3 SHALL be produced by LDAP implementations.2.1. Converting the RDNSequence If the RDNSequence is an empty sequence, the result is the empty or zero-length string. Otherwise, the output consists of the string encodings of each RelativeDistinguishedName in the RDNSequence (according to Section 2.2), starting with the last element of the sequence and moving backwards toward the first. The encodings of adjoining RelativeDistinguishedNames are separated by a comma (',' U+002C) character.2.2. Converting RelativeDistinguishedName When converting from an ASN.1 RelativeDistinguishedName to a string, the output consists of the string encodings of each AttributeTypeAndValue (according to Section 2.3), in any order. Where there is a multi-valued RDN, the outputs from adjoining AttributeTypeAndValues are separated by a plus sign ('+' U+002B) character.Zeilenga Standards Track [Page 3]RFC 4514 LDAP: Distinguished Names June 20062.3. Converting AttributeTypeAndValue The AttributeTypeAndValue is encoded as the string representation of the AttributeType, followed by an equals sign ('=' U+003D) character, followed by the string representation of the AttributeValue. The encoding of the AttributeValue is given in Section 2.4. If the AttributeType is defined to have a short name (descriptor) [RFC4512] and that short name is known to be registered [REGISTRY] [RFC4520] as identifying the AttributeType, that short name, a <descr>, is used. Otherwise the AttributeType is encoded as the dotted-decimal encoding, a <numericoid>, of its OBJECT IDENTIFIER. The <descr> and <numericoid> are defined in [RFC4512]. Implementations are not expected to dynamically update their knowledge of registered short names. However, implementations SHOULD provide a mechanism to allow their knowledge of registered short names to be updated.2.4. Converting an AttributeValue from ASN.1 to a String If the AttributeType is of the dotted-decimal form, the AttributeValue is represented by an number sign ('#' U+0023) character followed by the hexadecimal encoding of each of the octets of the BER encoding of the X.500 AttributeValue. This form is also used when the syntax of the AttributeValue does not have an LDAP- specific ([RFC4517], Section 3.1) string encoding defined for it, or the LDAP-specific string encoding is not restricted to UTF-8-encoded Unicode characters. This form may also be used in other cases, such as when a reversible string representation is desired (see Section 5.2). Otherwise, if the AttributeValue is of a syntax that has a LDAP- specific string encoding, the value is converted first to a UTF-8- encoded Unicode string according to its syntax specification (see [RFC4517], Section 3.3, for examples). If that UTF-8-encoded Unicode string does not have any of the following characters that need escaping, then that string can be used as the string representation of the value. - a space (' ' U+0020) or number sign ('#' U+0023) occurring at the beginning of the string; - a space (' ' U+0020) character occurring at the end of the string;Zeilenga Standards Track [Page 4]RFC 4514 LDAP: Distinguished Names June 2006 - one of the characters '"', '+', ',', ';', '<', '>', or '\' (U+0022, U+002B, U+002C, U+003B, U+003C, U+003E, or U+005C, respectively); - the null (U+0000) character. Other characters may be escaped. Each octet of the character to be escaped is replaced by a backslash and two hex digits, which form a single octet in the code of the character. Alternatively, if and only if the character to be escaped is one of ' ', '"', '#', '+', ',', ';', '<', '=', '>', or '\' (U+0020, U+0022, U+0023, U+002B, U+002C, U+003B, U+003C, U+003D, U+003E, U+005C, respectively) it can be prefixed by a backslash ('\' U+005C). Examples of the escaping mechanism are shown in Section 4.3. Parsing a String Back to a Distinguished Name The string representation of Distinguished Names is restricted to UTF-8 [RFC3629] encoded Unicode [Unicode] characters. The structure of this string representation is specified using the following Augmented BNF [RFC4234] grammar: distinguishedName = [ relativeDistinguishedName *( COMMA relativeDistinguishedName ) ] relativeDistinguishedName = attributeTypeAndValue *( PLUS attributeTypeAndValue ) attributeTypeAndValue = attributeType EQUALS attributeValue attributeType = descr / numericoid attributeValue = string / hexstring ; The following characters are to be escaped when they appear ; in the value to be encoded: ESC, one of <escaped>, leading ; SHARP or SPACE, trailing SPACE, and NULL. string = [ ( leadchar / pair ) [ *( stringchar / pair ) ( trailchar / pair ) ] ] leadchar = LUTF1 / UTFMB LUTF1 = %x01-1F / %x21 / %x24-2A / %x2D-3A / %x3D / %x3F-5B / %x5D-7F trailchar = TUTF1 / UTFMB TUTF1 = %x01-1F / %x21 / %x23-2A / %x2D-3A /Zeilenga Standards Track [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -