📄 mgtsdemo.m
字号:
function slide=mgtsdemo
% This is a slideshow file for use with playshow.m and makeshow.m
% Too see it run, type 'playshow mgtsdemo',
% Copyright (c) 1994-98 by The MathWorks, Inc.
% $Revision: 1.6 $
if nargout<1,
playshow mgtsdemo
else
%========== Slide 1 ==========
slide(1).code={
'load mgdata.dat',
'time = mgdata(:, 1);',
'ts = mgdata(:, 2);',
'plot(time, ts);',
'xlabel(''Time (sec)''); ylabel(''x(t)'');',
'title(''Mackey-Glass Chaotic Time Series'');' };
slide(1).text={
'',
' Press the "Start" button to see a demonstration of chaotic',
' time series prediction using ANFIS.',
'',
' This demo uses Fuzzy Logic Toolbox functions ANFIS and',
' GENFIS1.',
''};
%========== Slide 2 ==========
slide(2).code={
'' };
slide(2).text={
' The Mackey-Glass time-delay diff. equation is defined by',
'',
' dx(t)/dt = 0.2x(t-tau)/(1+x(t-tau)^10) - 0.1x(t)',
'',
' When x(0) = 1.2 and tau = 17, we have a non-periodic and',
' non-convergent time series that is very sensitive to',
' initial conditions. (We assume x(t) = 0 when t < 0.)'};
%========== Slide 3 ==========
slide(3).code={
's=findobj(gcf, ''type'', ''axes'');',
'delete(s)',
'axes( ''Units'',''normalized'', ''Position'',[0.10 0.47 0.65 0.45]);',
'',
'trn_data = zeros(500, 5);',
'chk_data = zeros(500, 5);',
'',
'% prepare training data',
'start = 101;',
'trn_data(:, 1) = ts(start:start+500-1);',
'start = start + 6;',
'trn_data(:, 2) = ts(start:start+500-1);',
'start = start + 6;',
'trn_data(:, 3) = ts(start:start+500-1);',
'start = start + 6;',
'trn_data(:, 4) = ts(start:start+500-1);',
'start = start + 6;',
'trn_data(:, 5) = ts(start:start+500-1);',
'',
'% prepare checking data',
'start = 601;',
'chk_data(:, 1) = ts(start:start+500-1);',
'start = start + 6;',
'chk_data(:, 2) = ts(start:start+500-1);',
'start = start + 6;',
'chk_data(:, 3) = ts(start:start+500-1);',
'start = start + 6;',
'chk_data(:, 4) = ts(start:start+500-1);',
'start = start + 6;',
'chk_data(:, 5) = ts(start:start+500-1);',
'',
'index = 118:1117+1; % ts starts with t = 0',
'plot(time(index), ts(index));',
'axis([min(time(index)) max(time(index)) min(ts(index)) max(ts(index))]);',
'xlabel(''Time (sec)''); ylabel(''x(t)'');',
'title(''Mackey-Glass Chaotic Time Series'');',
'' };
slide(3).text={
' Now we want to build an ANFIS that can predict x(t+6) from',
' the past values of this time series, that is, x(t-18), x(t-12),',
' x(t-6), and x(t). Therefore the training data format is',
' [x(t-18), x(t-12), x(t-6), x(t); x(t+6]',
' From t = 118 to 1117, we collect 1000 data pairs of the above',
' format. The first 500 are used for training while the others',
' are used for checking. The plot shows the segment of the time',
' series where data pairs were extracted from.'};
%========== Slide 4 ==========
slide(4).code={
'fismat = genfis1(trn_data);',
'position(1,:)=[.1 .8 .25 .15];',
'position(2,:)=[.42.8 .25 .15];',
'position(3,:)=[.1 .5 .25 .15];',
'position(4,:)=[.42 .5 .25 .15];',
'',
'for input_index=1:4,',
' subplot(''Position'', position(input_index, :))',
' [x,y]=plotmf(fismat,''input'',input_index);',
' plot(x,y)',
' axis([-inf inf 0 1.2]);',
' xlabel([''Input '' int2str(input_index)]);',
'end' };
slide(4).text={
' We use GENFIS1 to generate an initial FIS matrix from training',
' data. The command is quite simple since default values for',
' MF number (2) and MF type (''gbellmf'') are used:',
'',
' >> fismat = genfis1(trn_data);',
'',
' The initial MFs for training are shown in the plots.'};
%========== Slide 5 ==========
slide(5).code={
'' };
slide(5).text={
' There are 2^4 = 16 rules in the generated FIS matrix and the',
' number of fitting parameters is 108, including 24 nonlinear',
' parameters and 80 linear parameters. This is a proper balance',
' between number of fitting parameters and number of training',
' data (500). Ten epochs of training take about 4 min. on a SUN',
' SPARC II workstation. The ANFIS command looks like this:',
'',
' >> [fismat1, error] = anfis(trn_data, fismat, [], [], chk_data);',
'',
' To save time, we will load the training results directly.'};
%========== Slide 6 ==========
slide(6).code={
'% load training results',
'load mganfis.mat',
'',
'% plot final MF''s on x, y, z, u',
'for input_index=1:4,',
' subplot(''Position'', position(input_index,:))',
' [x,y]=plotmf(trn_out_fismat,''input'',input_index);',
' plot(x,y)',
' axis([-inf inf 0 1.2]);',
' xlabel([''Input '' int2str(input_index)]);',
'end' };
slide(6).text={
' After ten epochs of training, the final MFs are shown in the',
' plots. Note that these MFs after training do not change',
' drastically. Obviously most of the fitting is done by the linear',
' parameters while the nonlinear parameters are mostly for fine-',
' tuning for further improvement.',
'',
' Press "Next" to see error curve plot.'};
%========== Slide 7 ==========
slide(7).code={
's=findobj(gcf, ''type'', ''axes'');',
'delete(s)',
'axes( ''Units'',''normalized'', ''Position'',[0.10 0.47 0.65 0.45]);',
'',
'% error curves plot',
'epoch_n = 10;',
'tmp = [trn_error chk_error];',
'plot(tmp);',
'hold on; plot(tmp, ''o''); hold off;',
'xlabel(''Epochs'');',
'ylabel(''RMSE (Root Mean Squared Error)'');',
'title(''Error Curves'');',
'axis([0 epoch_n min(tmp(:)) max(tmp(:))]);',
'' };
slide(7).text={
' This plot displays error curves for both training and',
' checking data. Note that the training error is higher than the',
' checking error. This phenomenon is not uncommon in ANFIS',
' learning or nonlinear regression in general; it could indicate',
' that the training process is not close to finished yet.',
'',
' Press "Next" to see comparisons.'};
%========== Slide 8 ==========
slide(8).code={
'input = [trn_data(:, 1:4); chk_data(:, 1:4)];',
'anfis_output = evalfis(input, trn_out_fismat);',
'index = 125:1124;',
'plot(time(index), [ts(index) anfis_output]);',
'set(gca, ''Units'',''normalized'', ''Position'',[0.10 0.47 0.65 0.45]);',
'xlabel(''Time (sec)'');',
};
slide(8).text={
' This plot shows the original time series and the one predicted',
' by ANFIS. The difference is so tiny that it is impossible to tell',
' one from another by eye inspection. That is why you probably',
' see only the ANFIS prediction curve. The prediction errors',
' must be viewed on another scale.',
'',
' Press "Next" to view prediction errors of ANFIS.'};
%========== Slide 9 ==========
slide(9).code={
's=findobj(gcf, ''type'', ''axes'');',
'delete(s)',
'',
'diff = ts(index)-anfis_output;',
' % to get rid of previous lengend',
'plot(time(index), diff);',
'set(gca, ''Units'',''normalized'', ''Position'',[0.10 0.47 0.65 0.45]);',
'xlabel(''Time (sec)'');',
'title(''ANFIS Prediction Errors'');',
'' };
slide(9).text={
' Prediction error of ANFIS is shown here. Note that the scale',
' is about a hundredth of the scale of the previous plot.',
' Remember that we have only 10 epochs of training in this case;',
' better performance is expected if we have extensive training.'};
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -