📄 fft4f.c
字号:
/*
Fast Fourier/Cosine/Sine Transform
dimension :one
data length :power of 2
decimation :frequency
radix :4, 2
data :inplace
table :use
functions
cdft: Complex Discrete Fourier Transform
rdft: Real Discrete Fourier Transform
ddct: Discrete Cosine Transform
ddst: Discrete Sine Transform
dfct: Cosine Transform of RDFT (Real Symmetric DFT)
dfst: Sine Transform of RDFT (Real Anti-symmetric DFT)
function prototypes
void cdft(int, int, double *, int *, double *);
void rdft(int, int, double *, int *, double *);
void ddct(int, int, double *, int *, double *);
void ddst(int, int, double *, int *, double *);
void dfct(int, double *, double *, int *, double *);
void dfst(int, double *, double *, int *, double *);
-------- Complex DFT (Discrete Fourier Transform) --------
[definition]
<case1>
X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n
<case2>
X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n
(notes: sum_j=0^n-1 is a summation from j=0 to n-1)
[usage]
<case1>
ip[0] = 0; // first time only
cdft(2*n, 1, a, ip, w);
<case2>
ip[0] = 0; // first time only
cdft(2*n, -1, a, ip, w);
[parameters]
2*n :data length (int)
n >= 1, n = power of 2
a[0...2*n-1] :input/output data (double *)
input data
a[2*j] = Re(x[j]),
a[2*j+1] = Im(x[j]), 0<=j<n
output data
a[2*k] = Re(X[k]),
a[2*k+1] = Im(X[k]), 0<=k<n
ip[0...*] :work area for bit reversal (int *)
length of ip >= 2+sqrt(n) ; if n % 4 == 0
2+sqrt(n/2); otherwise
ip[0],ip[1] are pointers of the cos/sin table.
w[0...n/2-1] :cos/sin table (double *)
w[],ip[] are initialized if ip[0] == 0.
[remark]
Inverse of
cdft(2*n, -1, a, ip, w);
is
cdft(2*n, 1, a, ip, w);
for (j = 0; j <= 2 * n - 1; j++) {
a[j] *= 1.0 / n;
}
.
-------- Real DFT / Inverse of Real DFT --------
[definition]
<case1> RDFT
R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2
I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2
<case2> IRDFT (excluding scale)
a[k] = R[0]/2 + R[n/2]/2 +
sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) +
sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n
[usage]
<case1>
ip[0] = 0; // first time only
rdft(n, 1, a, ip, w);
<case2>
ip[0] = 0; // first time only
rdft(n, -1, a, ip, w);
[parameters]
n :data length (int)
n >= 2, n = power of 2
a[0...n-1] :input/output data (double *)
<case1>
output data
a[2*k] = R[k], 0<=k<n/2
a[2*k+1] = I[k], 0<k<n/2
a[1] = R[n/2]
<case2>
input data
a[2*j] = R[j], 0<=j<n/2
a[2*j+1] = I[j], 0<j<n/2
a[1] = R[n/2]
ip[0...*] :work area for bit reversal (int *)
length of ip >= 2+sqrt(n/2); if n % 4 == 2
2+sqrt(n/4); otherwise
ip[0],ip[1] are pointers of the cos/sin table.
w[0...n/2-1] :cos/sin table (double *)
w[],ip[] are initialized if ip[0] == 0.
[remark]
Inverse of
rdft(n, 1, a, ip, w);
is
rdft(n, -1, a, ip, w);
for (j = 0; j <= n - 1; j++) {
a[j] *= 2.0 / n;
}
.
-------- DCT (Discrete Cosine Transform) / Inverse of DCT --------
[definition]
<case1> IDCT (excluding scale)
C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n
<case2> DCT
C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n
[usage]
<case1>
ip[0] = 0; // first time only
ddct(n, 1, a, ip, w);
<case2>
ip[0] = 0; // first time only
ddct(n, -1, a, ip, w);
[parameters]
n :data length (int)
n >= 2, n = power of 2
a[0...n-1] :input/output data (double *)
output data
a[k] = C[k], 0<=k<n
ip[0...*] :work area for bit reversal (int *)
length of ip >= 2+sqrt(n/2); if n % 4 == 2
2+sqrt(n/4); otherwise
ip[0],ip[1] are pointers of the cos/sin table.
w[0...n*5/4-1] :cos/sin table (double *)
w[],ip[] are initialized if ip[0] == 0.
[remark]
Inverse of
ddct(n, -1, a, ip, w);
is
a[0] *= 0.5;
ddct(n, 1, a, ip, w);
for (j = 0; j <= n - 1; j++) {
a[j] *= 2.0 / n;
}
.
-------- DST (Discrete Sine Transform) / Inverse of DST --------
[definition]
<case1> IDST (excluding scale)
S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n
<case2> DST
S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n
[usage]
<case1>
ip[0] = 0; // first time only
ddst(n, 1, a, ip, w);
<case2>
ip[0] = 0; // first time only
ddst(n, -1, a, ip, w);
[parameters]
n :data length (int)
n >= 2, n = power of 2
a[0...n-1] :input/output data (double *)
<case1>
input data
a[j] = A[j], 0<j<n
a[0] = A[n]
output data
a[k] = S[k], 0<=k<n
<case2>
output data
a[k] = S[k], 0<k<n
a[0] = S[n]
ip[0...*] :work area for bit reversal (int *)
length of ip >= 2+sqrt(n/2); if n % 4 == 2
2+sqrt(n/4); otherwise
ip[0],ip[1] are pointers of the cos/sin table.
w[0...n*5/4-1] :cos/sin table (double *)
w[],ip[] are initialized if ip[0] == 0.
[remark]
Inverse of
ddst(n, -1, a, ip, w);
is
a[0] *= 0.5;
ddst(n, 1, a, ip, w);
for (j = 0; j <= n - 1; j++) {
a[j] *= 2.0 / n;
}
.
-------- Cosine Transform of RDFT (Real Symmetric DFT) --------
[definition]
C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n
[usage]
ip[0] = 0; // first time only
dfct(n, a, t, ip, w);
[parameters]
n :data length - 1 (int)
n >= 2, n = power of 2
a[0...n] :input/output data (double *)
output data
a[k] = C[k], 0<=k<=n
t[0...n/2] :work area (double *)
ip[0...*] :work area for bit reversal (int *)
length of ip >= 2+sqrt(n/4); if n % 4 == 0
2+sqrt(n/8); otherwise
ip[0],ip[1] are pointers of the cos/sin table.
w[0...n*5/8-1] :cos/sin table (double *)
w[],ip[] are initialized if ip[0] == 0.
[remark]
Inverse of
a[0] *= 0.5;
a[n] *= 0.5;
dfct(n, a, t, ip, w);
is
a[0] *= 0.5;
a[n] *= 0.5;
dfct(n, a, t, ip, w);
for (j = 0; j <= n; j++) {
a[j] *= 2.0 / n;
}
.
-------- Sine Transform of RDFT (Real Anti-symmetric DFT) --------
[definition]
S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n
[usage]
ip[0] = 0; // first time only
dfst(n, a, t, ip, w);
[parameters]
n :data length + 1 (int)
n >= 2, n = power of 2
a[0...n-1] :input/output data (double *)
output data
a[k] = S[k], 0<k<n
(a[0] is used for work area)
t[0...n/2-1] :work area (double *)
ip[0...*] :work area for bit reversal (int *)
length of ip >= 2+sqrt(n/4); if n % 4 == 0
2+sqrt(n/8); otherwise
ip[0],ip[1] are pointers of the cos/sin table.
w[0...n*5/8-1] :cos/sin table (double *)
w[],ip[] are initialized if ip[0] == 0.
[remark]
Inverse of
dfst(n, a, t, ip, w);
is
dfst(n, a, t, ip, w);
for (j = 1; j <= n - 1; j++) {
a[j] *= 2.0 / n;
}
.
*/
void cdft(int n, int isgn, double *a, int *ip, double *w)
{
void makewt(int nw, int *ip, double *w);
void bitrv2(int n, int *ip, double *a);
void cftsub(int n, double *a, double *w);
int j;
if (n > (ip[0] << 2)) {
makewt(n >> 2, ip, w);
}
if (n > 4) {
bitrv2(n, ip + 2, a);
}
if (n > 4 && isgn < 0) {
for (j = 1; j <= n - 1; j += 2) {
a[j] = -a[j];
}
cftsub(n, a, w);
for (j = 1; j <= n - 1; j += 2) {
a[j] = -a[j];
}
} else {
cftsub(n, a, w);
}
}
void rdft(int n, int isgn, double *a, int *ip, double *w)
{
void makewt(int nw, int *ip, double *w);
void makect(int nc, int *ip, double *c);
void bitrv2(int n, int *ip, double *a);
void cftsub(int n, double *a, double *w);
void rftsub(int n, double *a, int nc, double *c);
int j, nw, nc;
double xi;
nw = ip[0];
if (n > (nw << 2)) {
nw = n >> 2;
makewt(nw, ip, w);
}
nc = ip[1];
if (n > (nc << 2)) {
nc = n >> 2;
makect(nc, ip, w + nw);
}
if (isgn < 0) {
a[1] = 0.5 * (a[1] - a[0]);
a[0] += a[1];
for (j = 3; j <= n - 1; j += 2) {
a[j] = -a[j];
}
if (n > 4) {
rftsub(n, a, nc, w + nw);
bitrv2(n, ip + 2, a);
}
cftsub(n, a, w);
for (j = 1; j <= n - 1; j += 2) {
a[j] = -a[j];
}
} else {
if (n > 4) {
bitrv2(n, ip + 2, a);
}
cftsub(n, a, w);
if (n > 4) {
rftsub(n, a, nc, w + nw);
}
xi = a[0] - a[1];
a[0] += a[1];
a[1] = xi;
}
}
void ddct(int n, int isgn, double *a, int *ip, double *w)
{
void makewt(int nw, int *ip, double *w);
void makect(int nc, int *ip, double *c);
void bitrv2(int n, int *ip, double *a);
void cftsub(int n, double *a, double *w);
void rftsub(int n, double *a, int nc, double *c);
void dctsub(int n, double *a, int nc, double *c);
int j, nw, nc;
double xr;
nw = ip[0];
if (n > (nw << 2)) {
nw = n >> 2;
makewt(nw, ip, w);
}
nc = ip[1];
if (n > nc) {
nc = n;
makect(nc, ip, w + nw);
}
if (isgn < 0) {
xr = a[n - 1];
for (j = n - 2; j >= 2; j -= 2) {
a[j + 1] = a[j - 1] - a[j];
a[j] += a[j - 1];
}
a[1] = xr - a[0];
a[0] += xr;
if (n > 4) {
rftsub(n, a, nc, w + nw);
bitrv2(n, ip + 2, a);
}
cftsub(n, a, w);
for (j = 1; j <= n - 1; j += 2) {
a[j] = -a[j];
}
}
dctsub(n, a, nc, w + nw);
if (isgn >= 0) {
if (n > 4) {
bitrv2(n, ip + 2, a);
}
cftsub(n, a, w);
if (n > 4) {
rftsub(n, a, nc, w + nw);
}
xr = a[0] - a[1];
a[0] += a[1];
for (j = 2; j <= n - 2; j += 2) {
a[j - 1] = a[j] - a[j + 1];
a[j] += a[j + 1];
}
a[n - 1] = xr;
}
}
void ddst(int n, int isgn, double *a, int *ip, double *w)
{
void makewt(int nw, int *ip, double *w);
void makect(int nc, int *ip, double *c);
void bitrv2(int n, int *ip, double *a);
void cftsub(int n, double *a, double *w);
void rftsub(int n, double *a, int nc, double *c);
void dstsub(int n, double *a, int nc, double *c);
int j, nw, nc;
double xr;
nw = ip[0];
if (n > (nw << 2)) {
nw = n >> 2;
makewt(nw, ip, w);
}
nc = ip[1];
if (n > nc) {
nc = n;
makect(nc, ip, w + nw);
}
if (isgn < 0) {
xr = a[n - 1];
for (j = n - 2; j >= 2; j -= 2) {
a[j + 1] = a[j - 1] + a[j];
a[j] -= a[j - 1];
}
a[1] = -xr - a[0];
a[0] -= xr;
if (n > 4) {
rftsub(n, a, nc, w + nw);
bitrv2(n, ip + 2, a);
}
cftsub(n, a, w);
for (j = 1; j <= n - 1; j += 2) {
a[j] = -a[j];
}
}
dstsub(n, a, nc, w + nw);
if (isgn >= 0) {
if (n > 4) {
bitrv2(n, ip + 2, a);
}
cftsub(n, a, w);
if (n > 4) {
rftsub(n, a, nc, w + nw);
}
xr = a[0] - a[1];
a[0] += a[1];
for (j = 2; j <= n - 2; j += 2) {
a[j - 1] = -a[j] - a[j + 1];
a[j] -= a[j + 1];
}
a[n - 1] = -xr;
}
}
void dfct(int n, double *a, double *t, int *ip, double *w)
{
void makewt(int nw, int *ip, double *w);
void makect(int nc, int *ip, double *c);
void bitrv2(int n, int *ip, double *a);
void cftsub(int n, double *a, double *w);
void rftsub(int n, double *a, int nc, double *c);
void dctsub(int n, double *a, int nc, double *c);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -