📄 fft2f.c
字号:
/*
Fast Fourier/Cosine/Sine Transform
dimension :one
data length :power of 2
decimation :frequency
radix :2
data :inplace
table :not use
functions
cdft: Complex Discrete Fourier Transform
rdft: Real Discrete Fourier Transform
ddct: Discrete Cosine Transform
ddst: Discrete Sine Transform
dfct: Cosine Transform of RDFT (Real Symmetric DFT)
dfst: Sine Transform of RDFT (Real Anti-symmetric DFT)
function prototypes
void cdft(int, double, double, double *);
void rdft(int, double, double, double *);
void ddct(int, double, double, double *);
void ddst(int, double, double, double *);
void dfct(int, double, double, double *);
void dfst(int, double, double, double *);
-------- Complex DFT (Discrete Fourier Transform) --------
[definition]
<case1>
X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n
<case2>
X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n
(notes: sum_j=0^n-1 is a summation from j=0 to n-1)
[usage]
<case1>
cdft(2*n, cos(M_PI/n), sin(M_PI/n), a);
<case2>
cdft(2*n, cos(M_PI/n), -sin(M_PI/n), a);
[parameters]
2*n :data length (int)
n >= 1, n = power of 2
a[0...2*n-1] :input/output data (double *)
input data
a[2*j] = Re(x[j]), a[2*j+1] = Im(x[j]), 0<=j<n
output data
a[2*k] = Re(X[k]), a[2*k+1] = Im(X[k]), 0<=k<n
[remark]
Inverse of
cdft(2*n, cos(M_PI/n), -sin(M_PI/n), a);
is
cdft(2*n, cos(M_PI/n), sin(M_PI/n), a);
for (j = 0; j <= 2 * n - 1; j++) {
a[j] *= 1.0 / n;
}
.
-------- Real DFT / Inverse of Real DFT --------
[definition]
<case1> RDFT
R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2
I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2
<case2> IRDFT (excluding scale)
a[k] = R[0]/2 + R[n/2]/2 +
sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) +
sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n
[usage]
<case1>
rdft(n, cos(M_PI/n), sin(M_PI/n), a);
<case2>
rdft(n, cos(M_PI/n), -sin(M_PI/n), a);
[parameters]
n :data length (int)
n >= 2, n = power of 2
a[0...n-1] :input/output data (double *)
<case1>
output data
a[2*k] = R[k], 0<=k<n/2
a[2*k+1] = I[k], 0<k<n/2
a[1] = R[n/2]
<case2>
input data
a[2*j] = R[j], 0<=j<n/2
a[2*j+1] = I[j], 0<j<n/2
a[1] = R[n/2]
[remark]
Inverse of
rdft(n, cos(M_PI/n), sin(M_PI/n), a);
is
rdft(n, cos(M_PI/n), -sin(M_PI/n), a);
for (j = 0; j <= n - 1; j++) {
a[j] *= 2.0 / n;
}
.
-------- DCT (Discrete Cosine Transform) / Inverse of DCT --------
[definition]
<case1> IDCT (excluding scale)
C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n
<case2> DCT
C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n
[usage]
<case1>
ddct(n, cos(M_PI/n/2), sin(M_PI/n/2), a);
<case2>
ddct(n, cos(M_PI/n/2), -sin(M_PI/n/2), a);
[parameters]
n :data length (int)
n >= 2, n = power of 2
a[0...n-1] :input/output data (double *)
output data
a[k] = C[k], 0<=k<n
[remark]
Inverse of
ddct(n, cos(M_PI/n/2), -sin(M_PI/n/2), a);
is
a[0] *= 0.5;
ddct(n, cos(M_PI/n/2), sin(M_PI/n/2), a);
for (j = 0; j <= n - 1; j++) {
a[j] *= 2.0 / n;
}
.
-------- DST (Discrete Sine Transform) / Inverse of DST --------
[definition]
<case1> IDST (excluding scale)
S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n
<case2> DST
S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n
[usage]
<case1>
ddst(n, cos(M_PI/n/2), sin(M_PI/n/2), a);
<case2>
ddst(n, cos(M_PI/n/2), -sin(M_PI/n/2), a);
[parameters]
n :data length (int)
n >= 2, n = power of 2
a[0...n-1] :input/output data (double *)
<case1>
input data
a[j] = A[j], 0<j<n
a[0] = A[n]
output data
a[k] = S[k], 0<=k<n
<case2>
output data
a[k] = S[k], 0<k<n
a[0] = S[n]
[remark]
Inverse of
ddst(n, cos(M_PI/n/2), -sin(M_PI/n/2), a);
is
a[0] *= 0.5;
ddst(n, cos(M_PI/n/2), sin(M_PI/n/2), a);
for (j = 0; j <= n - 1; j++) {
a[j] *= 2.0 / n;
}
.
-------- Cosine Transform of RDFT (Real Symmetric DFT) --------
[definition]
C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n
[usage]
dfct(n, cos(M_PI/n), sin(M_PI/n), a);
[parameters]
n :data length - 1 (int)
n >= 2, n = power of 2
a[0...n] :input/output data (double *)
output data
a[k] = C[k], 0<=k<=n
[remark]
Inverse of
a[0] *= 0.5;
a[n] *= 0.5;
dfct(n, cos(M_PI/n), sin(M_PI/n), a);
is
a[0] *= 0.5;
a[n] *= 0.5;
dfct(n, cos(M_PI/n), sin(M_PI/n), a);
for (j = 0; j <= n; j++) {
a[j] *= 2.0 / n;
}
.
-------- Sine Transform of RDFT (Real Anti-symmetric DFT) --------
[definition]
S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n
[usage]
dfst(n, cos(M_PI/n), sin(M_PI/n), a);
[parameters]
n :data length + 1 (int)
n >= 2, n = power of 2
a[0...n-1] :input/output data (double *)
output data
a[k] = S[k], 0<k<n
(a[0] is used for work area)
[remark]
Inverse of
dfst(n, cos(M_PI/n), sin(M_PI/n), a);
is
dfst(n, cos(M_PI/n), sin(M_PI/n), a);
for (j = 1; j <= n - 1; j++) {
a[j] *= 2.0 / n;
}
.
*/
void bitrv2(int n, double *a)
{
int j, j1, k, k1, l, m, m2, n2;
double xr, xi;
m = n >> 2;
m2 = m << 1;
n2 = n - 2;
k = 0;
for (j = 0; j <= m2 - 4; j += 4) {
if (j < k) {
xr = a[j];
xi = a[j + 1];
a[j] = a[k];
a[j + 1] = a[k + 1];
a[k] = xr;
a[k + 1] = xi;
} else if (j > k) {
j1 = n2 - j;
k1 = n2 - k;
xr = a[j1];
xi = a[j1 + 1];
a[j1] = a[k1];
a[j1 + 1] = a[k1 + 1];
a[k1] = xr;
a[k1 + 1] = xi;
}
k1 = m2 + k;
xr = a[j + 2];
xi = a[j + 3];
a[j + 2] = a[k1];
a[j + 3] = a[k1 + 1];
a[k1] = xr;
a[k1 + 1] = xi;
l = m;
while (k >= l) {
k -= l;
l >>= 1;
}
k += l;
}
}
void cdft(int n, double wr, double wi, double *a)
{
void bitrv2(int n, double *a);
int i, j, k, l, m;
double wkr, wki, wdr, wdi, ss, xr, xi;
m = n;
while (m > 4) {
l = m >> 1;
wkr = 1;
wki = 0;
wdr = 1 - 2 * wi * wi;
wdi = 2 * wi * wr;
ss = 2 * wdi;
wr = wdr;
wi = wdi;
for (j = 0; j <= n - m; j += m) {
i = j + l;
xr = a[j] - a[i];
xi = a[j + 1] - a[i + 1];
a[j] += a[i];
a[j + 1] += a[i + 1];
a[i] = xr;
a[i + 1] = xi;
xr = a[j + 2] - a[i + 2];
xi = a[j + 3] - a[i + 3];
a[j + 2] += a[i + 2];
a[j + 3] += a[i + 3];
a[i + 2] = wdr * xr - wdi * xi;
a[i + 3] = wdr * xi + wdi * xr;
}
for (k = 4; k <= l - 4; k += 4) {
wkr -= ss * wdi;
wki += ss * wdr;
wdr -= ss * wki;
wdi += ss * wkr;
for (j = k; j <= n - m + k; j += m) {
i = j + l;
xr = a[j] - a[i];
xi = a[j + 1] - a[i + 1];
a[j] += a[i];
a[j + 1] += a[i + 1];
a[i] = wkr * xr - wki * xi;
a[i + 1] = wkr * xi + wki * xr;
xr = a[j + 2] - a[i + 2];
xi = a[j + 3] - a[i + 3];
a[j + 2] += a[i + 2];
a[j + 3] += a[i + 3];
a[i + 2] = wdr * xr - wdi * xi;
a[i + 3] = wdr * xi + wdi * xr;
}
}
m = l;
}
if (m > 2) {
for (j = 0; j <= n - 4; j += 4) {
xr = a[j] - a[j + 2];
xi = a[j + 1] - a[j + 3];
a[j] += a[j + 2];
a[j + 1] += a[j + 3];
a[j + 2] = xr;
a[j + 3] = xi;
}
}
if (n > 4) {
bitrv2(n, a);
}
}
void rdft(int n, double wr, double wi, double *a)
{
void cdft(int n, double wr, double wi, double *a);
int j, k;
double wkr, wki, wdr, wdi, ss, xr, xi, yr, yi;
if (n > 4) {
wkr = 0;
wki = 0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -