📄 viterbi.m
字号:
function [prob,q] = viterbi(hmm, O)
% viterbi recognition and decoding
%
% inputs:
% hmm -- hmm model struct
% O -- input observation sequence, T*D
% T is number of frames, D is order of speech parameter
% outputs:
% prob -- output probability
% q -- state sequence
% Copyright (C) Qiang He, 2001
%
% This file is part of MATLAB speech recognition software. Homepage is at:
% http://go.163.com/energy/speech.htm
%
% About the author:
% Qiang He (Ph.D.)
% E.E., Tsinghua University, Beijing, P.R.C., 100084
% Email: obase@163.net
% WWW : http://go.163.com/energy
% Tel : +86 13910051159
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
init = hmm.init; % initial probability
trans = hmm.trans; % transition probability
mix = hmm.mix; % gaussian mixture
N = hmm.N; % number of HMM states
T = size(O,1); % number of frames
% calculate log(init)
ind1 = find(init>0);
ind0 = find(init<=0);
init(ind0) = -inf;
init(ind1) = log(init(ind1));
% calculate log(trans)
ind1 = find(trans>0);
ind0 = find(trans<=0);
trans(ind0) = -inf;
trans(ind1) = log(trans(ind1));
% initialization
delta = zeros(T,N);
fai = zeros(T,N);
q = zeros(T,1);
% t=1
x = O(1,:);
for i = 1:N
delta(1,i) = init(i) + log(mixture(mix(i),x));
end
% t=2:T
for t = 2:T
for j = 1:N
[delta(t,j) fai(t,j)] = max(delta(t-1,:) + trans(:,j)');
x = O(t,:);
delta(t,j) = delta(t,j) + log(mixture(mix(j),x));
end
end
% final probability and state
[prob q(T)] = max(delta(T,:));
% trace back the best state sequence
for t=T-1:-1:1
q(t) = fai(t+1,q(t+1));
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -