📄 rfc2374.txt
字号:
Network Working Group R. HindenRequest for Comments: 2374 NokiaObsoletes: 2073 M. O'DellCategory: Standards Track UUNET S. Deering Cisco July 1998 An IPv6 Aggregatable Global Unicast Address FormatStatus of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved.1.0 Introduction This document defines an IPv6 aggregatable global unicast address format for use in the Internet. The address format defined in this document is consistent with the IPv6 Protocol [IPV6] and the "IPv6 Addressing Architecture" [ARCH]. It is designed to facilitate scalable Internet routing. This documented replaces RFC 2073, "An IPv6 Provider-Based Unicast Address Format". RFC 2073 will become historic. The Aggregatable Global Unicast Address Format is an improvement over RFC 2073 in a number of areas. The major changes include removal of the registry bits because they are not needed for route aggregation, support of EUI-64 based interface identifiers, support of provider and exchange based aggregation, separation of public and site topology, and new aggregation based terminology. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC 2119].Hinden, et. al. Standards Track [Page 1]RFC 2374 IPv6 Global Unicast Address Format July 19982.0 Overview of the IPv6 Address IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces. There are three types of addresses: Unicast, Anycast, and Multicast. This document defines a specific type of Unicast address. In this document, fields in addresses are given specific names, for example "subnet". When this name is used with the term "ID" (for "identifier") after the name (e.g., "subnet ID"), it refers to the contents of the named field. When it is used with the term "prefix" (e.g. "subnet prefix") it refers to all of the addressing bits to the left of and including this field. IPv6 unicast addresses are designed assuming that the Internet routing system makes forwarding decisions based on a "longest prefix match" algorithm on arbitrary bit boundaries and does not have any knowledge of the internal structure of IPv6 addresses. The structure in IPv6 addresses is for assignment and allocation. The only exception to this is the distinction made between unicast and multicast addresses. The specific type of an IPv6 address is indicated by the leading bits in the address. The variable-length field comprising these leading bits is called the Format Prefix (FP). This document defines an address format for the 001 (binary) Format Prefix for Aggregatable Global Unicast addresses. The same address format could be used for other Format Prefixes, as long as these Format Prefixes also identify IPv6 unicast addresses. Only the "001" Format Prefix is defined here.3.0 IPv6 Aggregatable Global Unicast Address Format This document defines an address format for the IPv6 aggregatable global unicast address assignment. The authors believe that this address format will be widely used for IPv6 nodes connected to the Internet. This address format is designed to support both the current provider-based aggregation and a new type of exchange-based aggregation. The combination will allow efficient routing aggregation for sites that connect directly to providers and for sites that connect to exchanges. Sites will have the choice to connect to either type of aggregation entity.Hinden, et. al. Standards Track [Page 2]RFC 2374 IPv6 Global Unicast Address Format July 1998 While this address format is designed to support exchange-based aggregation (in addition to current provider-based aggregation) it is not dependent on exchanges for it's overall route aggregation properties. It will provide efficient route aggregation with only provider-based aggregation. Aggregatable addresses are organized into a three level hierarchy: - Public Topology - Site Topology - Interface Identifier Public topology is the collection of providers and exchanges who provide public Internet transit services. Site topology is local to a specific site or organization which does not provide public transit service to nodes outside of the site. Interface identifiers identify interfaces on links. ______________ ______________ --+/ \+--------------+/ \+---------- ( P1 ) +----+ ( P3 ) +----+ +\______________/ | |----+\______________/+--| |-- | +--| X1 | +| X2 | | ______________ / | |-+ ______________ / | |-- +/ \+ +-+--+ \ / \+ +----+ ( P2 ) / \ +( P4 ) --+\______________/ / \ \______________/ | / \ | | | / | | | | / | | | _|_ _/_ _|_ _|_ _|_ / \ / \ / \ / \ / \ ( S.A ) ( S.B ) ( P5 ) ( P6 )( S.C ) \___/ \___/ \___/ \___/ \___/ | / \ _|_ _/_ \ ___ / \ / \ +-/ \ ( S.D ) ( S.E ) ( S.F ) \___/ \___/ \___/ As shown in the figure above, the aggregatable address format is designed to support long-haul providers (shown as P1, P2, P3, and P4), exchanges (shown as X1 and X2), multiple levels of providers (shown at P5 and P6), and subscribers (shown as S.x) Exchanges (unlike current NAPs, FIXes, etc.) will allocate IPv6 addresses. Organizations who connect to these exchanges will also subscribe (directly, indirectly via the exchange, etc.) for long-haul service from one or more long-haul providers. Doing so, they will achieveHinden, et. al. Standards Track [Page 3]RFC 2374 IPv6 Global Unicast Address Format July 1998 addressing independence from long-haul transit providers. They will be able to change long-haul providers without having to renumber their organization. They can also be multihomed via the exchange to more than one long-haul provider without having to have address prefixes from each long-haul provider. Note that the mechanisms used for this type of provider selection and portability are not discussed in the document.3.1 Aggregatable Global Unicast Address Structure The aggregatable global unicast address format is as follows: | 3| 13 | 8 | 24 | 16 | 64 bits | +--+-----+---+--------+--------+--------------------------------+ |FP| TLA |RES| NLA | SLA | Interface ID | | | ID | | ID | ID | | +--+-----+---+--------+--------+--------------------------------+ <--Public Topology---> Site <--------> Topology <------Interface Identifier-----> Where FP Format Prefix (001) TLA ID Top-Level Aggregation Identifier RES Reserved for future use NLA ID Next-Level Aggregation Identifier SLA ID Site-Level Aggregation Identifier INTERFACE ID Interface Identifier The following sections specify each part of the IPv6 Aggregatable Global Unicast address format.3.2 Top-Level Aggregation ID Top-Level Aggregation Identifiers (TLA ID) are the top level in the routing hierarchy. Default-free routers must have a routing table entry for every active TLA ID and will probably have additional entries providing routing information for the TLA ID in which they are located. They may have additional entries in order to optimize routing for their specific topology, but the routing topology at all levels must be designed to minimize the number of additional entries fed into the default free routing tables.Hinden, et. al. Standards Track [Page 4]RFC 2374 IPv6 Global Unicast Address Format July 1998 This addressing format supports 8,192 (2^13) TLA ID's. Additional TLA ID's may be added by either growing the TLA field to the right into the reserved field or by using this format for additional format prefixes. The issues relating to TLA ID assignment are beyond the scope of this document. They will be described in a document under preparation.3.3 Reserved The Reserved field is reserved for future use and must be set to zero. The Reserved field allows for future growth of the TLA and NLA fields as appropriate. See section 4.0 for a discussion.3.4 Next-Level Aggregation Identifier Next-Level Aggregation Identifier's are used by organizations assigned a TLA ID to create an addressing hierarchy and to identify sites. The organization can assign the top part of the NLA ID in a manner to create an addressing hierarchy appropriate to its network. It can use the remainder of the bits in the field to identify sites it wishes to serve. This is shown as follows: | n | 24-n bits | 16 | 64 bits | +-----+--------------------+--------+-----------------+ |NLA1 | Site ID | SLA ID | Interface ID | +-----+--------------------+--------+-----------------+ Each organization assigned a TLA ID receives 24 bits of NLA ID space. This NLA ID space allows each organization to provide service to approximately as many organizations as the current IPv4 Internet can support total networks. Organizations assigned TLA ID's may also support NLA ID's in their own Site ID space. This allows the organization assigned a TLA ID to provide service to organizations providing public transit service and to organizations who do not provide public transit service. These organizations receiving an NLA ID may also choose to use their Site ID space to support other NLA ID's. This is shown as follows:Hinden, et. al. Standards Track [Page 5]RFC 2374 IPv6 Global Unicast Address Format July 1998 | n | 24-n bits | 16 | 64 bits | +-----+--------------------+--------+-----------------+ |NLA1 | Site ID | SLA ID | Interface ID | +-----+--------------------+--------+-----------------+ | m | 24-n-m | 16 | 64 bits | +-----+--------------+--------+-----------------+ |NLA2 | Site ID | SLA ID | Interface ID | +-----+--------------+--------+-----------------+ | o |24-n-m-o| 16 | 64 bits | +-----+--------+--------+-----------------+ |NLA3 | Site ID| SLA ID | Interface ID | +-----+--------+--------+-----------------+ The design of the bit layout of the NLA ID space for a specific TLA ID is left to the organization responsible for that TLA ID. Likewise the design of the bit layout of the next level NLA ID is the responsibility of the previous level NLA ID. It is recommended that organizations assigning NLA address space use "slow start" allocation procedures similar to [RFC2050]. The design of an NLA ID allocation plan is a tradeoff between routing aggregation efficiency and flexibility. Creating hierarchies allows for greater amount of aggregation and results in smaller routing tables. Flat NLA ID assignment provides for easier allocation and attachment flexibility, but results in larger routing tables.3.5 Site-Level Aggregation Identifier The SLA ID field is used by an individual organization to create its own local addressing hierarchy and to identify subnets. This is analogous to subnets in IPv4 except that each organization has a much greater number of subnets. The 16 bit SLA ID field support 65,535 individual subnets. Organizations may choose to either route their SLA ID "flat" (e.g., not create any logical relationship between the SLA identifiers that results in larger routing tables), or to create a two or more level hierarchy (that results in smaller routing tables) in the SLA ID field. The latter is shown as follows:Hinden, et. al. Standards Track [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -