⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 k-均值聚类算法- 月华 - 新浪blog.htm

📁 C-means 算法
💻 HTM
📖 第 1 页 / 共 5 页
字号:
                        bestnum;<BR>&nbsp; double min=NUM_MAX;<BR>&nbsp; double 
                        distant;</DIV>
                        <DIV>&nbsp;&nbsp;&nbsp; 
                        kcluster=(ccLink)malloc(knum*sizeof(ccnode));</DIV>
                        <DIV>&nbsp;for 
                        (i=0;i&lt;knum;i++)<BR>&nbsp;{<BR>&nbsp;&nbsp;kcluster[i].data=(double*)malloc(row*sizeof(double));<BR>&nbsp;}<BR>&nbsp;<BR>&nbsp; 
                        for (i=0;i&lt;knum;i++)<BR>&nbsp; {<BR>&nbsp;&nbsp; 
                        num=rand()%posnum;&nbsp;<BR>&nbsp;&nbsp;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        for 
                        (j=0;j&lt;row;j++)<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;&nbsp; 
                        kcluster[i].data[j]=pos[num][j];<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        }<BR>&nbsp;&nbsp;&nbsp;<BR>&nbsp;&nbsp;&nbsp; 
                        kcluster[i].dataindex = 0;<BR>&nbsp;&nbsp; 
                        kcluster[i].next=NULL;<BR>&nbsp; 
                        }<BR>&nbsp;&nbsp;&nbsp;&nbsp; for 
                        (i=0;i&lt;posnum;i++)<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp; min = NUM_MAX;<BR>&nbsp;&nbsp; for 
                        (j=0;j&lt;knum;j++)<BR>&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;&nbsp; 
                        distant=dist(pos[i],kcluster[j].data);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        if 
                        (distant&lt;min)<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        min=distant;<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        bestnum=j;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        }<BR>&nbsp;&nbsp; }<BR>&nbsp;&nbsp; 
                        insertcluster(&amp;kcluster[bestnum],pos[i],i);<BR>&nbsp;&nbsp; 
                        numperclu[bestnum]++;//簇内数目加一<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        }<BR>&nbsp; for (i=0;i&lt;knum;i++)<BR>&nbsp; 
                        {<BR>&nbsp;&nbsp; calmean(&amp;kcluster[i]);</DIV>
                        <DIV>&nbsp; }<BR>&nbsp;&nbsp;&nbsp;</DIV>
                        <DIV>&nbsp; return pos;<BR>}</DIV>
                        <DIV>&nbsp;</DIV>
                        <DIV>//删除不在同一个簇内的节点,并查入到最近的簇中<BR>void 
                        delandinsercluster(double* data,int 
                        bestnum)<BR>{<BR>&nbsp;int i;</DIV>
                        <DIV>&nbsp;for 
                        (i=0;i&lt;knum;i++)<BR>&nbsp;{<BR>&nbsp;&nbsp;&nbsp; 
                        ccLink pointer;<BR>&nbsp;pointer = 
                        &amp;kcluster[i];<BR>&nbsp;&nbsp;&nbsp; ccLink 
                        back=pointer;<BR>&nbsp;&nbsp;&nbsp; 
                        pointer=pointer-&gt;next;</DIV>
                        <DIV>&nbsp;&nbsp;&nbsp; for (&nbsp;&nbsp; 
                        ;pointer!=NULL;pointer=pointer-&gt;next)<BR>&nbsp;&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;<BR>&nbsp;&nbsp;if 
                        (dist(data,pointer-&gt;data)&lt;NUM_MIN)<BR>&nbsp;&nbsp;{<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        if 
                        (i!=bestnum)<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        //查入到bestnum簇中<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        insertcluster(&amp;kcluster[bestnum],data,pointer-&gt;dataindex);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        numperclu[bestnum]++;//簇内数目加一</DIV>
                        <DIV>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        //删除i簇中的节点,并查入到bestnum簇中<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        back-&gt;next=pointer-&gt;next;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        free(pointer-&gt;data);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        free(pointer);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        numperclu[i]--;//簇内数目减一<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        }<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        break;<BR>&nbsp;&nbsp;}<BR>&nbsp;&nbsp;&nbsp;&nbsp;<BR>&nbsp;&nbsp;back 
                        = pointer;<BR>&nbsp;&nbsp;&nbsp; }<BR>&nbsp;}</DIV>
                        <DIV><BR>}<BR>int kmeancluster(double** 
                        pos)<BR>{&nbsp;&nbsp;<BR>&nbsp;</DIV>
                        <DIV>&nbsp;int i,j;<BR>&nbsp;<BR>&nbsp;int 
                        bestnum=0;<BR>&nbsp;double distance=0.0;<BR>&nbsp;for 
                        (i=0;i&lt;posnum;i++)<BR>&nbsp;{<BR>&nbsp;&nbsp;double 
                        min=NUM_MAX;<BR>&nbsp;&nbsp;for 
                        (j=0;j&lt;knum;j++)<BR>&nbsp;&nbsp;{<BR>&nbsp;&nbsp;&nbsp;distance=dist(pos[i],kcluster[j].data);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        if 
                        (distance&lt;min)<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        min=distance;<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        bestnum=j;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        }<BR>&nbsp;&nbsp;<BR>&nbsp;&nbsp;}<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        delandinsercluster(pos[i],bestnum);<BR>&nbsp;&nbsp;&nbsp;&nbsp;<BR>&nbsp;}</DIV>
                        <DIV><BR>&nbsp;double** 
                        temp=(double**)malloc(knum*sizeof(double*));<BR>&nbsp;for 
                        (i=0;i&lt;knum;i++)<BR>&nbsp;{<BR>&nbsp;&nbsp;temp[i]=(double*)malloc(row*sizeof(double));<BR>&nbsp;}</DIV>
                        <DIV>&nbsp;&nbsp;&nbsp;&nbsp; for 
                        (i=0;i&lt;knum;i++)<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp; for (j=0;j&lt;row;j++)<BR>&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;&nbsp; 
                        temp[i][j]=kcluster[i].data[j];//后面的值<BR>&nbsp;&nbsp; 
                        }<BR>&nbsp;&nbsp;&nbsp;&nbsp; 
                        }<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</DIV>
                        <DIV>&nbsp;for 
                        (i=0;i&lt;knum;i++)<BR>&nbsp;{<BR>&nbsp;&nbsp;calmean(&amp;kcluster[i]);<BR>&nbsp;}<BR>&nbsp;&nbsp;&nbsp;<BR>&nbsp; 
                        int isstop = isexit(temp);</DIV>
                        <DIV><BR>&nbsp; for (i=0;i&lt;knum;i++)<BR>&nbsp; 
                        {<BR>&nbsp;&nbsp; free(temp[i]);<BR>&nbsp; }<BR>&nbsp; 
                        free(temp);<BR>&nbsp; return isstop;</DIV>
                        <DIV>&nbsp;&nbsp;&nbsp;&nbsp;<BR>}<BR>&nbsp;<BR>void 
                        printcluster()<BR>{<BR>&nbsp;ccLink 
                        pointer;<BR>&nbsp;FILE* fp;<BR>&nbsp;if 
                        ((fp=fopen("out.txt","w"))==NULL)<BR>&nbsp;{<BR>&nbsp;&nbsp;printf("error! 
                        can't open out 
                        file!\n");<BR>&nbsp;&nbsp;exit(0);<BR>&nbsp;}<BR>&nbsp;<BR>&nbsp;&nbsp; 
                        int i,j;<BR>&nbsp;&nbsp; for 
                        (i=0;i&lt;knum;i++)<BR>&nbsp;&nbsp; 
                        {<BR>&nbsp;printf("第%d组:数目:%d节点:",i,numperclu[i]);<BR>&nbsp;&nbsp;&nbsp; 
                        fprintf(fp,"%d %d 
                        ",i,numperclu[i]);<BR>&nbsp;&nbsp;&nbsp; for 
                        (pointer=kcluster[i].next;pointer!=NULL;<BR>&nbsp;pointer=pointer-&gt;next&nbsp;)<BR>&nbsp;&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; printf("%d 
                        ",pointer-&gt;dataindex);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        fprintf(fp,"%d ",pointer-&gt;dataindex);</DIV>
                        <DIV>&nbsp;&nbsp;&nbsp; 
                        }<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        printf("\n");<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        fprintf(fp,"\n");<BR>&nbsp;&nbsp; }<BR>&nbsp;&nbsp; 
                        fclose(fp);<BR>}<BR>void 
                        freeall()<BR>{<BR>&nbsp;free(numperclu);<BR>&nbsp;&nbsp;&nbsp; 
                        int i;<BR>&nbsp;ccLink pointer;<BR>&nbsp;&nbsp;&nbsp; 
                        ccLink 
                        tpointer;<BR>&nbsp;for(i=0;i&lt;knum;i++)<BR>&nbsp;{<BR>&nbsp;&nbsp;pointer=&amp;kcluster[i];<BR>&nbsp;&nbsp;pointer=pointer-&gt;next;</DIV>
                        <DIV>&nbsp;&nbsp;while 
                        (pointer!=NULL)<BR>&nbsp;&nbsp;{<BR>&nbsp;&nbsp;&nbsp;tpointer=pointer;<BR>&nbsp;&nbsp;&nbsp;pointer=pointer-&gt;next;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 
                        &nbsp;free(tpointer-&gt;data);<BR>&nbsp; 
                        &nbsp;&nbsp;&nbsp;&nbsp; 
                        free(tpointer);<BR>&nbsp;&nbsp;}<BR>&nbsp; 
                        &nbsp;free(kcluster[i].data);&nbsp;&nbsp;<BR>&nbsp;}<BR>&nbsp;<BR>&nbsp;free(kcluster);<BR>}<BR>int 
                        main()<BR>{<BR>&nbsp;&nbsp; knum=3;</DIV>
                        <DIV>&nbsp;&nbsp; int i=0;<BR>&nbsp;&nbsp; double **pos 
                        = initdata();<BR>&nbsp;</DIV>
                        <DIV>&nbsp;&nbsp; int 
                        isstop=1;<BR>&nbsp;&nbsp;<BR>&nbsp;&nbsp;&nbsp;&nbsp;</DIV>
                        <DIV>&nbsp;&nbsp; while (isstop)<BR>&nbsp;&nbsp; 
                        {<BR>&nbsp;&nbsp;&nbsp; i++;<BR>&nbsp;&nbsp;&nbsp; 
                        isstop = kmeancluster(pos);<BR>&nbsp;&nbsp;&nbsp; 
                        printf("第%d次迭代\n",i);<BR>&nbsp;&nbsp;&nbsp;&nbsp;<BR>&nbsp;&nbsp; 
                        }<BR>&nbsp;&nbsp;&nbsp; 
                        printcluster();<BR>&nbsp;<BR>&nbsp;freeall();</DIV>
                        <DIV>&nbsp;&nbsp; return 
                    0;<BR>}</DIV></DIV></TD></TR></TBODY></TABLE>
                  <TABLE class=dashed cellSpacing=0 cellPadding=0 align=center 
                  border=0>
                    <TBODY>
                    <TR>
                      <TD></TD></TR></TBODY></TABLE>
                  <TABLE class=function cellSpacing=0 cellPadding=0 align=center 
                  border=0>
                    <TBODY>
                    <TR>
                      <TD><A title=提示:评论数每隔1~2小时刷新一次 
                        onclick="hide('comment48e01819010003qp')" 
                        href="javascript:;">评论(12)</A>┆<A 
                        href="http://blog.sina.com.cn/control/writing/scriber/article_add_by_quote.php?blog_id=48e01819010003qp" 
                        target=_blank>引用</A>┆<A title=提示:阅读数每隔1~2小时刷新一次 
                        href="http://blog.sina.com.cn/myblog/article/article_reader.php?blog_id=48e01819010003qp" 
                        target=_blank>阅读(487)</A>┆<A 
                        href="http://blog.sina.com.cn/myblog/article/article_print.php?blog_id=48e01819010003qp" 
                        target=_blank>打印</A></TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE>
            <TABLE cellSpacing=0 cellPadding=0 align=center border=0>
              <TBODY>
              <TR>
                <TD id=articleChild48e01819010003qp 
              style="DISPLAY: none"></TD></TR></TBODY></TABLE></DIV></CENTER><A 
            name=comment></A>
            <CENTER>
            <TABLE class=comment cellSpacing=0 cellPadding=0 border=0>
              <TBODY>
              <TR>
                <TD>
                  <DIV id=comment48e01819010003qp>
                  <TABLE class="comment sysHand" cellSpacing=0 cellPadding=0 
                  align=center>
                    <TBODY>
                    <TR class=title 
                    onclick="hide('commentBody48e01819010003qp');swap('commentTitle48e01819010003qp','className','up','down');">
                      <TD class=up id=commentTitle48e01819010003qp>
                        <DIV class=sysBr500>文章评论</DIV></TD></TR></TBODY></TABLE>
                  <DIV id=commentBody48e01819010003qp>
                  <DIV class=alt>以下网友留言只代表其个人观点,不代表新浪网的观点或立场</DIV>
                  <DIV id=commentItem48e01819010003qp>
                  <TABLE class="sysHand item" cellSpacing=0 cellPadding=0 
                  align=center>
                    <TBODY>
                    <TR class=iTitle 
                    onclick="hide('commentItemBody48e01819010003qp1');swap('commentItemTitle48e01819010003qp1','className','iUp','iDown')">
                      <TD class=iUp id=commentItemTitle48e01819010003qp1>
                        <DIV class=sysBr500><A 
                        href="http://blog.sina.com.cn/u/1222645785"><U>月华</U></A></DIV></TD></TR></TBODY></TABLE>
                  <DIV id=commentItemBody48e01819010003qp1>
                  <TABLE class=item cellSpacing=0 cellPadding=0 align=center>
                    <TBODY>
                    <TR>
                      <TD align=middle>
                        <TABLE class=itemBody cellSpacing=0 cellPadding=0 
                        align=center border=0>
                          <TBODY>
                          <TR>
                            <TD class=iPubdate align=right>2006-05-23 
                            20:15:37</TD></TR>
                          <TR>
                            <TD class=iText>
                              <DIV 
                              class=sysBr476>k-均值是一种迭代的聚类算法,迭代过程中不断移动簇集中的成员直至到理想的簇集为止。利用k-均值得到的簇,簇中成员之间的相似的很高,同时不同簇中成员之间的相异度也很高。时间复杂度是o(tkn),t是迭代次数。找到的是局部最优解,而不是全局最优解。发现的仅是凸的簇,也不能很好的处理异常点。<BR>k-均值常用来和其它新算法做比较。<BR><BR>本人花了两个晚上编成,在p4机,512MRAM,2.82GHZ上运行,效率尚可。其中,读文件的程序可由不同的需要进行改写。由于时间仓卒,水平有限,错误之处,在所难免。欢迎批评指正。</DIV></TD></TR></TBODY></TABLE></TD></TR></TBODY></TABLE></DIV></DIV>
                  <TABLE class=item cellSpacing=0 cellPadding=0 align=center>
                    <TBODY>
                    <TR>
                      <TD class=iBottom></TD></TR></TBODY></TABLE>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -