⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 maxentmodel.java

📁 垃圾邮件过滤器源代码
💻 JAVA
字号:
///////////////////////////////////////////////////////////////////////////////// Copyright (C) 2001 Jason Baldridge and Gann Bierner//// This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.//// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Lesser General Public License for more details.//// You should have received a copy of the GNU Lesser General Public// License along with this program; if not, write to the Free Software// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.//////////////////////////////////////////////////////////////////////////////package opennlp.maxent;/** * Interface for maximum entropy models. * * @author      Jason Baldridge * @version     $Revision: 1.4 $, $Date: 2003/12/09 23:13:53 $ **/public interface MaxentModel {  /**   * Evaluates a context.   *   * @param context A list of String names of the contextual predicates   *                which are to be evaluated together.   * @return an array of the probabilities for each of the different   *         outcomes, all of which sum to 1.   *   **/  public double[] eval(String[] context);  public double[] eval(Predicate[] context);  /**     * Evaluates a context.     *     * @param context A list of String names of the contextual predicates     *                which are to be evaluated together.     * @param probs An array which is populated with the probabilities for each of the different     *         outcomes, all of which sum to 1.     * @return an array of the probabilities for each of the different     *         outcomes, all of which sum to 1.  The <code>probs</code> is returned if it is appropiately sized.     **/  public double[] eval(String[] context, double probs[]);  public double[] eval(Predicate[] context,double probs[]);  /**   * Simple function to return the outcome associated with the index   * containing the highest probability in the double[].   *   * @param outcomes A <code>double[]</code> as returned by the   *            <code>eval(String[] context)</code>   *            method.   * @return the String name of the best outcome   **/  public String getBestOutcome(double[] outcomes);  /**   * Return a string matching all the outcome names with all the   * probabilities produced by the <code>eval(String[]   * context)</code> method.   *   * @param outcomes A <code>double[]</code> as returned by the   *            <code>eval(String[] context)</code>   *            method.   * @return    String containing outcome names paired with the normalized   *            probability (contained in the <code>double[] ocs</code>)   *            for each one.   **/  public String getAllOutcomes(double[] outcomes);  /**   * Gets the String name of the outcome associated with the index   * i.   *   * @param i the index for which the name of the associated outcome is   *          desired.   * @return the String name of the outcome   **/  public String getOutcome(int i);  /**   * Gets the index associated with the String name of the given   * outcome.   *   * @param outcome the String name of the outcome for which the   *          index is desired   * @return the index if the given outcome label exists for this   * model, -1 if it does not.   **/  public int getIndex(String outcome);  /**   * Returns the data structures relevant to storing the model.   **/  public Object[] getDataStructures();  /** Returns the number of outcomes for this model.   *  @return The number of outcomes.   **/  public int getNumOutcomes();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -