⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 inverse.f

📁 一个基于打靶法的最优控制求解软件 求解过程中采用参数延续算法
💻 F
📖 第 1 页 / 共 5 页
字号:
      ELSE         JY = 1 - ( N - 1 )*INCY      END IF      IF( INCX.EQ.1 )THEN         DO 20, J = 1, N            IF( Y( JY ).NE.ZERO )THEN               TEMP = ALPHA*Y( JY )               DO 10, I = 1, M                  A( I, J ) = A( I, J ) + X( I )*TEMP   10          CONTINUE            END IF            JY = JY + INCY   20    CONTINUE      ELSE         IF( INCX.GT.0 )THEN            KX = 1         ELSE            KX = 1 - ( M - 1 )*INCX         END IF         DO 40, J = 1, N            IF( Y( JY ).NE.ZERO )THEN               TEMP = ALPHA*Y( JY )               IX   = KX               DO 30, I = 1, M                  A( I, J ) = A( I, J ) + X( IX )*TEMP                  IX        = IX        + INCX   30          CONTINUE            END IF            JY = JY + INCY   40    CONTINUE      END IF*      RETURN**     End of DGER  .*      END      SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )**  -- LAPACK driver routine (version 1.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     February 29, 1992**     .. Scalar Arguments ..      INTEGER            INFO, LDA, LDB, N, NRHS*     ..*     .. Array Arguments ..      INTEGER            IPIV( * )      DOUBLE PRECISION   A( LDA, * ), B( LDB, * )*     ..**  Purpose*  =======**  DGESV computes the solution to a real system of linear equations*     A * X = B,*  where A is an N by N matrix and X and B are N by NRHS matrices.**  The LU decomposition with partial pivoting and row interchanges is*  used to factor A as*     A = P * L * U,*  where P is a permutation matrix, L is unit lower triangular, and U is*  upper triangular.  The factored form of A is then used to solve the*  system of equations A * X = B.**  Arguments*  =========**  N       (input) INTEGER*          The number of linear equations, i.e., the order of the*          matrix A.  N >= 0.**  NRHS    (input) INTEGER*          The number of right hand sides, i.e., the number of columns*          of the matrix B.  NRHS >= 0.**  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)*          On entry, the N by N matrix of coefficients A.*          On exit, the factors L and U from the factorization*          A = P*L*U; the unit diagonal elements of L are not stored.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,N).**  IPIV    (output) INTEGER array, dimension (N)*          The pivot indices that define the permutation matrix P;*          row i of the matrix was interchanged with row IPIV(i).**  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)*          On entry, the N by NRHS matrix of right hand side vectors B*          for the system of equations A*X = B.*          On exit, if INFO = 0, the N by NRHS matrix of solution*          vectors X.**  LDB     (input) INTEGER*          The leading dimension of the array B.  LDB >= max(1,N).**  INFO    (output) INTEGER*          = 0: successful exit*          < 0: if INFO = -k, the k-th argument had an illegal value*          > 0: if INFO = k, U(k,k) is exactly zero.  The factorization*               has been completed, but the factor U is exactly*               singular, so the solution could not be computed.**  =====================================================================**     .. External Subroutines ..      EXTERNAL           DGETRF, DGETRS, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0      IF( N.LT.0 ) THEN         INFO = -1      ELSE IF( NRHS.LT.0 ) THEN         INFO = -2      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN         INFO = -4      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN         INFO = -7      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DGESV ', -INFO )         RETURN      END IF**     Compute the LU factorization of A.*      CALL DGETRF( N, N, A, LDA, IPIV, INFO )      IF( INFO.EQ.0 ) THEN**        Solve the system A*X = B, overwriting B with X.*         CALL DGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, B, LDB,     $                INFO )      END IF      RETURN**     End of DGESV*      END      SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO )**  -- LAPACK routine (version 1.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     February 29, 1992**     .. Scalar Arguments ..      INTEGER            INFO, LDA, M, N*     ..*     .. Array Arguments ..      INTEGER            IPIV( * )      DOUBLE PRECISION   A( LDA, * )*     ..**  Purpose*  =======**  DGETF2 computes an LU factorization of a general m-by-n matrix A*  using partial pivoting with row interchanges.**  The factorization has the form*     A = P * L * U*  where P is a permutation matrix, L is lower triangular with unit*  diagonal elements (lower trapezoidal if m > n), and U is upper*  triangular (upper trapezoidal if m < n).**  This is the right-looking Level 2 BLAS version of the algorithm.**  Arguments*  =========**  M       (input) INTEGER*          The number of rows of the matrix A.  M >= 0.**  N       (input) INTEGER*          The number of columns of the matrix A.  N >= 0.**  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)*          On entry, the m by n matrix to be factored.*          On exit, the factors L and U from the factorization*          A = P*L*U; the unit diagonal elements of L are not stored.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,M).**  IPIV    (output) INTEGER array, dimension (min(M,N))*          The pivot indices; for 1 <= i <= min(M,N), row i of the*          matrix was interchanged with row IPIV(i).**  INFO    (output) INTEGER*          = 0: successful exit*          < 0: if INFO = -k, the k-th argument had an illegal value*          > 0: if INFO = k, U(k,k) is exactly zero. The factorization*               has been completed, but the factor U is exactly*               singular, and division by zero will occur if it is used*               to solve a system of equations.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE, ZERO      PARAMETER          ( ONE = 1D+0, ZERO = 0D+0 )*     ..*     .. Local Scalars ..      INTEGER            J, JP*     ..*     .. External Functions ..      INTEGER            IDAMAX      EXTERNAL           IDAMAX*     ..*     .. External Subroutines ..      EXTERNAL           DGER, DSCAL, DSWAP, XERBLA*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX, MIN*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0      IF( M.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -4      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DGETF2', -INFO )         RETURN      END IF**     Quick return if possible*      IF( M.EQ.0 .OR. N.EQ.0 )     $   RETURN*      DO 10 J = 1, MIN( M, N )**        Find pivot and test for singularity.*         JP = J - 1 + IDAMAX( M-J+1, A( J, J ), 1 )         IPIV( J ) = JP         IF( A( JP, J ).NE.ZERO ) THEN**           Apply the interchange to columns 1:N.*            IF( JP.NE.J )     $         CALL DSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA )**           Compute elements J+1:M of J-th column.*            IF( J.LT.M )     $         CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )*         ELSE IF( INFO.EQ.0 ) THEN*            INFO = J         END IF*         IF( J+1.LE.N ) THEN**           Update trailing submatrix.*            CALL DGER( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), LDA,     $                 A( J+1, J+1 ), LDA )         END IF   10 CONTINUE      RETURN**     End of DGETF2*      END      SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )**  -- LAPACK routine (version 3.0) --*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,*     Courant Institute, Argonne National Lab, and Rice University*     March 31, 1993**     .. Scalar Arguments ..      INTEGER            INFO, LDA, M, N*     ..*     .. Array Arguments ..      INTEGER            IPIV( * )      DOUBLE PRECISION   A( LDA, * )*     ..**  Purpose*  =======**  DGETRF computes an LU factorization of a general M-by-N matrix A*  using partial pivoting with row interchanges.**  The factorization has the form*     A = P * L * U*  where P is a permutation matrix, L is lower triangular with unit*  diagonal elements (lower trapezoidal if m > n), and U is upper*  triangular (upper trapezoidal if m < n).**  This is the right-looking Level 3 BLAS version of the algorithm.**  Arguments*  =========**  M       (input) INTEGER*          The number of rows of the matrix A.  M >= 0.**  N       (input) INTEGER*          The number of columns of the matrix A.  N >= 0.**  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)*          On entry, the M-by-N matrix to be factored.*          On exit, the factors L and U from the factorization*          A = P*L*U; the unit diagonal elements of L are not stored.**  LDA     (input) INTEGER*          The leading dimension of the array A.  LDA >= max(1,M).**  IPIV    (output) INTEGER array, dimension (min(M,N))*          The pivot indices; for 1 <= i <= min(M,N), row i of the*          matrix was interchanged with row IPIV(i).**  INFO    (output) INTEGER*          = 0:  successful exit*          < 0:  if INFO = -i, the i-th argument had an illegal value*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization*                has been completed, but the factor U is exactly*                singular, and division by zero will occur if it is used*                to solve a system of equations.**  =====================================================================**     .. Parameters ..      DOUBLE PRECISION   ONE      PARAMETER          ( ONE = 1D+0 )*     ..*     .. Local Scalars ..      INTEGER            I, IINFO, J, JB, NB*     ..*     .. External Subroutines ..      EXTERNAL           DGEMM, DGETF2, DLASWP, DTRSM, XERBLA*     ..*     .. External Functions ..      INTEGER            ILAENV      EXTERNAL           ILAENV*     ..*     .. Intrinsic Functions ..      INTRINSIC          MAX, MIN*     ..*     .. Executable Statements ..**     Test the input parameters.*      INFO = 0      IF( M.LT.0 ) THEN         INFO = -1      ELSE IF( N.LT.0 ) THEN         INFO = -2      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN         INFO = -4      END IF      IF( INFO.NE.0 ) THEN         CALL XERBLA( 'DGETRF', -INFO )         RETURN      END IF**     Quick return if possible*      IF( M.EQ.0 .OR. N.EQ.0 )     $   RETURN**     Determine the block size for this environment.*      NB = ILAENV( 1, 'DGETRF', ' ', M, N, -1, -1 )      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN**        Use unblocked code.*         CALL DGETF2( M, N, A, LDA, IPIV, INFO )      ELSE**        Use blocked code.*         DO 20 J = 1, MIN( M, N ), NB            JB = MIN( MIN( M, N )-J+1, NB )**           Factor diagonal and subdiagonal blocks and test for exact*           singularity.*            CALL DGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )**           Adjust INFO and the pivot indices.*            IF( INFO.EQ.0 .AND. IINFO.GT.0 )     $         INFO = IINFO + J - 1            DO 10 I = J, MIN( M, J+JB-1 )               IPIV( I ) = J - 1 + IPIV( I )   10       CONTINUE**           Apply interchanges to columns 1:J-1.*            CALL DLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )*            IF( J+JB.LE.N ) THEN**              Apply interchanges to columns J+JB:N.*               CALL DLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1,     $                      IPIV, 1 )**              Compute block row of U.*               CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,     $                     N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),     $                     LDA )               IF( J+JB.LE.M ) THEN**                 Update trailing submatrix.*                  CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,     $                        N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,     $                        A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),     $                        LDA )

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -