📄 ex752.m
字号:
%----------------------------------------------------------------------------%
% Example 7.5.2
% to solve natural frequency of 2-d truss structure
%
% Problem description
% Find the natural frequency of a truss structure
% as shown in Fig. 7.4.2.
%
% Variable descriptions
% k = element stiffness matrix
% m = element mass matrix
% kk = system stiffness matrix
% mm = system mass vector
% index = a vector containing system dofs associated with each element
% gcoord = global coordinate matrix
% prop = element property matrix
% nodes = nodal connectivity matrix for each element
% bcdof = a vector containing dofs associated with boundary conditions
% bcval = a vector containing boundary condition values associated with
% the dofs in 'bcdof'
%----------------------------------------------------------------------------%
%---------------------------
% control input data
%---------------------------
clear
nel=9; % number of elements
nnel=2; % number of nodes per element
ndof=2; % number of dofs per node
nnode=6; % total number of nodes in system
sdof=nnode*ndof; % total system dofs
%---------------------------
% nodal coordinates
%---------------------------
gcoord(1,1)=0.0; gcoord(1,2)=0.0;
gcoord(2,1)=4.0; gcoord(2,2)=0.0;
gcoord(3,1)=4.0; gcoord(3,2)=3.0;
gcoord(4,1)=8.0; gcoord(4,2)=0.0;
gcoord(5,1)=8.0; gcoord(5,2)=3.0;
gcoord(6,1)=12.; gcoord(6,2)=0.0;
%------------------------------------------
% material and geometric properties
%------------------------------------------
prop(1)=200e9; % elastic modulus
prop(2)=0.0025; % cross-sectional area
prop(3)=7860; % density
%-----------------------------
% nodal connectivity
%-----------------------------
nodes(1,1)=1; nodes(1,2)=2;
nodes(2,1)=1; nodes(2,2)=3;
nodes(3,1)=2; nodes(3,2)=3;
nodes(4,1)=2; nodes(4,2)=4;
nodes(5,1)=3; nodes(5,2)=4;
nodes(6,1)=3; nodes(6,2)=5;
nodes(7,1)=4; nodes(7,2)=5;
nodes(8,1)=4; nodes(8,2)=6;
nodes(9,1)=5; nodes(9,2)=6;
%-----------------------------
% applied constraints
%-----------------------------
bcdof(1)=1; % 1st dof (horizontal displ) is constrained
bcval(1)=0; % whose described value is 0
bcdof(2)=2; % 2nd dof (vertical displ) is constrained
bcdof(3)=12; % 12th dof (horizontal displ) is constrained
bcval(3)=0; % whose described value is 0
%----------------------------
% initialization to zero
%----------------------------
kk=zeros(sdof,sdof); % system stiffness matrix
mm=zeros(sdof,sdof); % system mass matrix
index=zeros(nnel*ndof,1); % index vector
%--------------------------
% loop for elements
%--------------------------
for iel=1:nel % loop for the total number of elements
nd(1)=nodes(iel,1); % 1st connected node for the (iel)-th element
nd(2)=nodes(iel,2); % 2nd connected node for the (iel)-th element
x1=gcoord(nd(1),1); y1=gcoord(nd(1),2); % coordinate of 1st node
x2=gcoord(nd(2),1); y2=gcoord(nd(2),2); % coordinate of 2nd node
leng=sqrt((x2-x1)^2+(y2-y1)^2); % element length
if (x2-x1)==0;
if y2>y1;
beta=2*atan(1); % angle between local and global axes
else
beta=-2*atan(1);
end
else
beta=atan((y2-y1)/(x2-x1));
end
el=prop(1); % extract elastic modulus
area=prop(2); % extract cross-sectional area
rho=prop(3); % extract mass density
index=feeldof(nd,nnel,ndof); % extract system dofs for the element
ipt=1; % flag for consistent mass matrix
[k,m]=fetruss2(el,leng,area,rho,beta,ipt); % element matrix
kk=feasmbl1(kk,k,index); % assemble system stiffness matrix
mm=feasmbl1(mm,m,index); % assemble system mass matrix
end
%-------------------------------------------
% apply constraints and solve
%-------------------------------------------
[kk,mm]=feaplycs(kk,mm,bcdof); % apply the boundary conditions
fsol=eig(kk,mm);
fsol=sqrt(fsol);
%----------------------------
% print fem solutions
%----------------------------
num=1:1:sdof;
freqcy=[num' fsol] % print natural frequency
%--------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -