⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clog.c

📁 gridgen是一款强大的网格生成程序
💻 C
📖 第 1 页 / 共 2 页
字号:
 * Also tested by csin(casin(z)) = z. */double complexcasin (z)     double complex z;{  double complex w;  static double complex ca, ct, zz, z2;  double x, y;  x = creal (z);  y = cimag (z);  if (y == 0.0)    {      if (fabs(x) > 1.0)	{	  w = PIO2 + 0.0 * I;	  mtherr ("casin", DOMAIN);	}      else	{	  w = asin (x) + 0.0 * I;	}      return (w);    }/* Power series expansion *//*b = cabs(z);if( b < 0.125 ){z2.r = (x - y) * (x + y);z2.i = 2.0 * x * y;cn = 1.0;n = 1.0;ca.r = x;ca.i = y;sum.r = x;sum.i = y;do	{	ct.r = z2.r * ca.r  -  z2.i * ca.i;	ct.i = z2.r * ca.i  +  z2.i * ca.r;	ca.r = ct.r;	ca.i = ct.i;	cn *= n;	n += 1.0;	cn /= n;	n += 1.0;	b = cn/n;	ct.r *= b;	ct.i *= b;	sum.r += ct.r;	sum.i += ct.i;	b = fabs(ct.r) + fabs(ct.i);	}while( b > MACHEP );w->r = sum.r;w->i = sum.i;return;}*/  ca = x + y * I;  ct = ca * I;	/* sqrt( 1 - z*z) */  /* cmul( &ca, &ca, &zz ) */  /*x * x  -  y * y */  zz = (x - y) * (x + y) + (2.0 * x * y) * I;  zz = 1.0 - creal(zz) - cimag(zz) * I;  z2 = csqrt (zz);  zz = ct + z2;  zz = clog (zz);  /* multiply by 1/i = -i */  w = zz * (-1.0 * I);  return (w);}/*							cacos() * *	Complex circular arc cosine * * * * SYNOPSIS: * * double complex cacos(); * double complex z, w; * * w = cacos (z); * * * * DESCRIPTION: * * * w = arccos z  =  PI/2 - arcsin z. * * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5200      1.6e-15      2.8e-16 *    IEEE      -10,+10     30000      1.8e-14      2.2e-15 */double complexcacos (z)     double complex z;{  double complex w;  w = casin (z);  w = (PIO2  -  creal (w)) - cimag (w) * I;  return (w);}/*							catan() * *	Complex circular arc tangent * * * * SYNOPSIS: * * double complex catan(); * double complex z, w; * * w = catan (z); * * * * DESCRIPTION: * * If *     z = x + iy, * * then *          1       (    2x     ) * Re w  =  - arctan(-----------)  +  k PI *          2       (     2    2) *                  (1 - x  - y ) * *               ( 2         2) *          1    (x  +  (y+1) ) * Im w  =  - log(------------) *          4    ( 2         2) *               (x  +  (y-1) ) * * Where k is an arbitrary integer. * * catan(z) = -i catanh(iz). * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5900       1.3e-16     7.8e-18 *    IEEE      -10,+10     30000       2.3e-15     8.5e-17 * The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2, * had peak relative error 1.5e-16, rms relative error * 2.9e-17.  See also clog(). */double complexcatan (z)     double complex z;{  double complex w;  double a, t, x, x2, y;  x = creal (z);  y = cimag (z);  if ((x == 0.0) && (y > 1.0))    goto ovrf;  x2 = x * x;  a = 1.0 - x2 - (y * y);  if (a == 0.0)    goto ovrf;  t = 0.5 * atan2 (2.0 * x, a);  w = redupi (t);  t = y - 1.0;  a = x2 + (t * t);  if (a == 0.0)    goto ovrf;  t = y + 1.0;  a = (x2 + (t * t))/a;  w = w + (0.25 * log (a)) * I;  return (w);ovrf:  mtherr ("catan", OVERFLOW);  w = MAXNUM + MAXNUM * I;  return (w);}/*							csinh * *	Complex hyperbolic sine * * * * SYNOPSIS: * * double complex csinh(); * double complex z, w; * * w = csinh (z); * * DESCRIPTION: * * csinh z = (cexp(z) - cexp(-z))/2 *         = sinh x * cos y  +  i cosh x * sin y . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       3.1e-16     8.2e-17 * */double complexcsinh (z)     double complex z;{  double complex w;  double x, y;  x = creal(z);  y = cimag(z);  w = sinh (x) * cos (y)  +  (cosh (x) * sin (y)) * I;  return (w);}/*							casinh * *	Complex inverse hyperbolic sine * * * * SYNOPSIS: * * double complex casinh(); * double complex z, w; * * w = casinh (z); * * * * DESCRIPTION: * * casinh z = -i casin iz . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.8e-14     2.6e-15 * */double complexcasinh (z)     double complex z;{  double complex w;  w = -1.0 * I * casin (z * I);  return (w);}/*							ccosh * *	Complex hyperbolic cosine * * * * SYNOPSIS: * * double complex ccosh(); * double complex z, w; * * w = ccosh (z); * * * * DESCRIPTION: * * ccosh(z) = cosh x  cos y + i sinh x sin y . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       2.9e-16     8.1e-17 * */double complexccosh (z)     double complex z;{  double complex w;  double x, y;  x = creal(z);  y = cimag(z);  w = cosh (x) * cos (y)  +  (sinh (x) * sin (y)) * I;  return (w);}/*							cacosh * *	Complex inverse hyperbolic cosine * * * * SYNOPSIS: * * double complex cacosh(); * double complex z, w; * * w = cacosh (z); * * * * DESCRIPTION: * * acosh z = i acos z . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.6e-14     2.1e-15 * */double complexcacosh (z)     double complex z;{  double complex w;  w = I * cacos (z);  return (w);}/*							ctanh * *	Complex hyperbolic tangent * * * * SYNOPSIS: * * double complex ctanh(); * double complex z, w; * * w = ctanh (z); * * * * DESCRIPTION: * * tanh z = (sinh 2x  +  i sin 2y) / (cosh 2x + cos 2y) . * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       1.7e-14     2.4e-16 * */double complexctanh (z)     double complex z;{  double complex w;  double x, y, d;  x = creal(z);  y = cimag(z);  d = cosh (2.0 * x) + cos (2.0 * y);  w = sinh (2.0 * x) / d  +  (sin (2.0 * y) / d) * I;  return (w);}/*							catanh * *	Complex inverse hyperbolic tangent * * * * SYNOPSIS: * * double complex catanh(); * double complex z, w; * * w = catanh (z); * * * * DESCRIPTION: * * Inverse tanh, equal to  -i catan (iz); * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       2.3e-16     6.2e-17 * */double complexcatanh (z)     double complex z;{  double complex w;  w = -1.0 * I * catan (z * I);  return (w);}/*							cpow * *	Complex power function * * * * SYNOPSIS: * * double complex cpow(); * double complex a, z, w; * * w = cpow (a, z); * * * * DESCRIPTION: * * Raises complex A to the complex Zth power. * Definition is per AMS55 # 4.2.8, * analytically equivalent to cpow(a,z) = cexp(z clog(a)). * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    IEEE      -10,+10     30000       9.4e-15     1.5e-15 * */double complexcpow (a, z)     double complex a, z;{  double complex w;  double x, y, r, theta, absa, arga;  x = creal (z);  y = cimag (z);  absa = cabs (a);  if (absa == 0.0)    {      return (0.0 + 0.0 * I);    }  arga = carg (a);  r = pow (absa, x);  theta = x * arga;  if (y != 0.0)    {      r = r * exp (-y * arga);      theta = theta + y * log (absa);    }  w = r * cos (theta) + (r * sin (theta)) * I;  return (w);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -