⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 clog.c

📁 gridgen是一款强大的网格生成程序
💻 C
📖 第 1 页 / 共 2 页
字号:
/*							clog.c * *	Complex natural logarithm * * * * SYNOPSIS: * * double complex clog(); * double complex z, w; * * w = clog (z); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then *       w = log(r) + i arctan(y/x). *  * The arctangent ranges from -PI to +PI. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      7000       8.5e-17     1.9e-17 *    IEEE      -10,+10     30000       5.0e-15     1.1e-16 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 5.2e-16, rms * absolute error 1.0e-16. */#include "complex.h"#include "mconf.h"#ifdef ANSIPROTstatic void cchsh ( double x, double *c, double *s );static double redupi ( double x );static double ctans ( double complex z );#elsestatic void cchsh();static double redupi();static double ctans();double cabs(), fabs(), sqrt();double log(), exp(), atan2(), cosh(), sinh();double asin(), sin(), cos();#endifextern double MAXNUM, MACHEP, PI, PIO2;double complexclog (z)     double complex z;{  double complex w;  double p, rr;  /*rr = sqrt( z->r * z->r  +  z->i * z->i );*/  rr = cabs(z);  p = log(rr);  rr = atan2 (cimag (z), creal (z));  w = p + rr * I;  return (w);}/*							cexp() * *	Complex exponential function * * * * SYNOPSIS: * * double complex cexp (); * double complex z, w; * * w = cexp (z); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If *     z = x + iy, *     r = exp(x), * * then * *     w = r cos y + i r sin y. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8700       3.7e-17     1.1e-17 *    IEEE      -10,+10     30000       3.0e-16     8.7e-17 * */double complexcexp(z)     double complex z;{  double complex w;  double r, x, y;  x = creal (z);  y = cimag (z);  r = exp (x);  w = r * cos (y) + r * sin (y) * I;  return (w);}/*							csin() * *	Complex circular sine * * * * SYNOPSIS: * * double complex csin(); * double complex z, w; * * w = csin (z); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *     w = sin x  cosh y  +  i cos x sinh y. * * csin(z) = -i csinh(iz). * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8400       5.3e-17     1.3e-17 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16 * Also tested by csin(casin(z)) = z. * */double complexcsin (z)     double complex z;{  double complex w;  double ch, sh;  cchsh( cimag (z), &ch, &sh );  w = sin (creal(z)) * ch + (cos (creal(z)) * sh) * I;  return (w);}/* calculate cosh and sinh */static voidcchsh( x, c, s )     double x, *c, *s;{  double e, ei;  if (fabs(x) <= 0.5)    {      *c = cosh(x);      *s = sinh(x);    }  else    {      e = exp(x);      ei = 0.5/e;      e = 0.5 * e;      *s = e - ei;      *c = e + ei;    }}/*							ccos() * *	Complex circular cosine * * * * SYNOPSIS: * * double complex ccos(); * double complex z, w; * * w = ccos (z); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *     w = cos x  cosh y  -  i sin x sinh y. * * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      8400       4.5e-17     1.3e-17 *    IEEE      -10,+10     30000       3.8e-16     1.0e-16 */double complexccos (z)     double complex z;{  double complex w;  double ch, sh;  cchsh( cimag(z), &ch, &sh );  w = cos(creal (z)) * ch - (sin (creal (z)) * sh) * I;  return (w);}/*							ctan() * *	Complex circular tangent * * * * SYNOPSIS: * * double complex ctan(); * double complex z, w; * * w = ctan (z); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *           sin 2x  +  i sinh 2y *     w  =  --------------------. *            cos 2x  +  cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2.  The denominator is evaluated by its Taylor * series near these points. * * ctan(z) = -i ctanh(iz). * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      5200       7.1e-17     1.6e-17 *    IEEE      -10,+10     30000       7.2e-16     1.2e-16 * Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z. */double complexctan (z)     double complex z;{  double complex w;  double d;  d = cos (2.0 * creal (z)) + cosh (2.0 * cimag (z));  if (fabs(d) < 0.25)    d = ctans (z);  if (d == 0.0 )    {      mtherr ("ctan", OVERFLOW);      w = MAXNUM + MAXNUM * I;      return (w);    }  w = sin (2.0 * creal(z)) / d + (sinh (2.0 * cimag(z)) / d) * I;  return (w);}/*							ccot() * *	Complex circular cotangent * * * * SYNOPSIS: * * double complex ccot(); * double complex z, w; * * w = ccot (z); * * * * DESCRIPTION: * * If *     z = x + iy, * * then * *           sin 2x  -  i sinh 2y *     w  =  --------------------. *            cosh 2y  -  cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2.  Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10      3000       6.5e-17     1.6e-17 *    IEEE      -10,+10     30000       9.2e-16     1.2e-16 * Also tested by ctan * ccot = 1 + i0. */double complexccot (z)     double complex z;{  double complex w;  double d;  d = cosh (2.0 * cimag (z)) - cos (2.0 * creal(z));  if (fabs(d) < 0.25)    d = ctans (z);  if (d == 0.0)    {      mtherr ("ccot", OVERFLOW);      w = MAXNUM + MAXNUM * I;      return (w);    }  w = sin (2.0 * creal(z)) / d - (sinh (2.0 * cimag(z)) / d) * I;  return w;}/* Program to subtract nearest integer multiple of PI *//* extended precision value of PI: */#ifdef UNKstatic double DP1 = 3.14159265160560607910E0;static double DP2 = 1.98418714791870343106E-9;static double DP3 = 1.14423774522196636802E-17;#endif#ifdef DECstatic unsigned short P1[] = {0040511,0007732,0120000,0000000,};static unsigned short P2[] = {0031010,0055060,0100000,0000000,};static unsigned short P3[] = {0022123,0011431,0105056,0001560,};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef IBMPCstatic unsigned short P1[] = {0x0000,0x5400,0x21fb,0x4009};static unsigned short P2[] = {0x0000,0x1000,0x0b46,0x3e21};static unsigned short P3[] = {0xc06e,0x3145,0x6263,0x3c6a};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef MIEEEstatic unsigned short P1[] = {0x4009,0x21fb,0x5400,0x0000};static unsigned short P2[] = {0x3e21,0x0b46,0x1000,0x0000};static unsigned short P3[] = {0x3c6a,0x6263,0x3145,0xc06e};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endifstatic doubleredupi(x)     double x;{  double t;  long i;  t = x/PI;  if( t >= 0.0 )    t += 0.5;  else    t -= 0.5;  i = t;	/* the multiple */  t = i;  t = ((x - t * DP1) - t * DP2) - t * DP3;  return (t);}/*  Taylor series expansion for cosh(2y) - cos(2x)	*/static doublectans (z)     double complex z;{  double f, x, x2, y, y2, rn, t;  double d;  x = fabs (2.0 * creal (z));  y = fabs (2.0 * cimag(z));  x = redupi(x);  x = x * x;  y = y * y;  x2 = 1.0;  y2 = 1.0;  f = 1.0;  rn = 0.0;  d = 0.0;  do    {      rn += 1.0;      f *= rn;      rn += 1.0;      f *= rn;      x2 *= x;      y2 *= y;      t = y2 + x2;      t /= f;      d += t;      rn += 1.0;      f *= rn;      rn += 1.0;      f *= rn;      x2 *= x;      y2 *= y;      t = y2 - x2;      t /= f;      d += t;    }  while (fabs(t/d) > MACHEP);  return (d);}/*							casin() * *	Complex circular arc sine * * * * SYNOPSIS: * * double complex casin(); * double complex z, w; * * w = casin (z); * * * * DESCRIPTION: * * Inverse complex sine: * *                               2 * w = -i clog( iz + csqrt( 1 - z ) ). * * casin(z) = -i casinh(iz) * * ACCURACY: * *                      Relative error: * arithmetic   domain     # trials      peak         rms *    DEC       -10,+10     10100       2.1e-15     3.4e-16 *    IEEE      -10,+10     30000       2.2e-14     2.7e-15 * Larger relative error can be observed for z near zero.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -