📄 clog.c
字号:
/* clog.c * * Complex natural logarithm * * * * SYNOPSIS: * * double complex clog(); * double complex z, w; * * w = clog (z); * * * * DESCRIPTION: * * Returns complex logarithm to the base e (2.718...) of * the complex argument x. * * If z = x + iy, r = sqrt( x**2 + y**2 ), * then * w = log(r) + i arctan(y/x). * * The arctangent ranges from -PI to +PI. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 7000 8.5e-17 1.9e-17 * IEEE -10,+10 30000 5.0e-15 1.1e-16 * * Larger relative error can be observed for z near 1 +i0. * In IEEE arithmetic the peak absolute error is 5.2e-16, rms * absolute error 1.0e-16. */#include "complex.h"#include "mconf.h"#ifdef ANSIPROTstatic void cchsh ( double x, double *c, double *s );static double redupi ( double x );static double ctans ( double complex z );#elsestatic void cchsh();static double redupi();static double ctans();double cabs(), fabs(), sqrt();double log(), exp(), atan2(), cosh(), sinh();double asin(), sin(), cos();#endifextern double MAXNUM, MACHEP, PI, PIO2;double complexclog (z) double complex z;{ double complex w; double p, rr; /*rr = sqrt( z->r * z->r + z->i * z->i );*/ rr = cabs(z); p = log(rr); rr = atan2 (cimag (z), creal (z)); w = p + rr * I; return (w);}/* cexp() * * Complex exponential function * * * * SYNOPSIS: * * double complex cexp (); * double complex z, w; * * w = cexp (z); * * * * DESCRIPTION: * * Returns the exponential of the complex argument z * into the complex result w. * * If * z = x + iy, * r = exp(x), * * then * * w = r cos y + i r sin y. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8700 3.7e-17 1.1e-17 * IEEE -10,+10 30000 3.0e-16 8.7e-17 * */double complexcexp(z) double complex z;{ double complex w; double r, x, y; x = creal (z); y = cimag (z); r = exp (x); w = r * cos (y) + r * sin (y) * I; return (w);}/* csin() * * Complex circular sine * * * * SYNOPSIS: * * double complex csin(); * double complex z, w; * * w = csin (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = sin x cosh y + i cos x sinh y. * * csin(z) = -i csinh(iz). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 5.3e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 * Also tested by csin(casin(z)) = z. * */double complexcsin (z) double complex z;{ double complex w; double ch, sh; cchsh( cimag (z), &ch, &sh ); w = sin (creal(z)) * ch + (cos (creal(z)) * sh) * I; return (w);}/* calculate cosh and sinh */static voidcchsh( x, c, s ) double x, *c, *s;{ double e, ei; if (fabs(x) <= 0.5) { *c = cosh(x); *s = sinh(x); } else { e = exp(x); ei = 0.5/e; e = 0.5 * e; *s = e - ei; *c = e + ei; }}/* ccos() * * Complex circular cosine * * * * SYNOPSIS: * * double complex ccos(); * double complex z, w; * * w = ccos (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * w = cos x cosh y - i sin x sinh y. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 8400 4.5e-17 1.3e-17 * IEEE -10,+10 30000 3.8e-16 1.0e-16 */double complexccos (z) double complex z;{ double complex w; double ch, sh; cchsh( cimag(z), &ch, &sh ); w = cos(creal (z)) * ch - (sin (creal (z)) * sh) * I; return (w);}/* ctan() * * Complex circular tangent * * * * SYNOPSIS: * * double complex ctan(); * double complex z, w; * * w = ctan (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x + i sinh 2y * w = --------------------. * cos 2x + cosh 2y * * On the real axis the denominator is zero at odd multiples * of PI/2. The denominator is evaluated by its Taylor * series near these points. * * ctan(z) = -i ctanh(iz). * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 5200 7.1e-17 1.6e-17 * IEEE -10,+10 30000 7.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 and catan(ctan(z)) = z. */double complexctan (z) double complex z;{ double complex w; double d; d = cos (2.0 * creal (z)) + cosh (2.0 * cimag (z)); if (fabs(d) < 0.25) d = ctans (z); if (d == 0.0 ) { mtherr ("ctan", OVERFLOW); w = MAXNUM + MAXNUM * I; return (w); } w = sin (2.0 * creal(z)) / d + (sinh (2.0 * cimag(z)) / d) * I; return (w);}/* ccot() * * Complex circular cotangent * * * * SYNOPSIS: * * double complex ccot(); * double complex z, w; * * w = ccot (z); * * * * DESCRIPTION: * * If * z = x + iy, * * then * * sin 2x - i sinh 2y * w = --------------------. * cosh 2y - cos 2x * * On the real axis, the denominator has zeros at even * multiples of PI/2. Near these points it is evaluated * by a Taylor series. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 3000 6.5e-17 1.6e-17 * IEEE -10,+10 30000 9.2e-16 1.2e-16 * Also tested by ctan * ccot = 1 + i0. */double complexccot (z) double complex z;{ double complex w; double d; d = cosh (2.0 * cimag (z)) - cos (2.0 * creal(z)); if (fabs(d) < 0.25) d = ctans (z); if (d == 0.0) { mtherr ("ccot", OVERFLOW); w = MAXNUM + MAXNUM * I; return (w); } w = sin (2.0 * creal(z)) / d - (sinh (2.0 * cimag(z)) / d) * I; return w;}/* Program to subtract nearest integer multiple of PI *//* extended precision value of PI: */#ifdef UNKstatic double DP1 = 3.14159265160560607910E0;static double DP2 = 1.98418714791870343106E-9;static double DP3 = 1.14423774522196636802E-17;#endif#ifdef DECstatic unsigned short P1[] = {0040511,0007732,0120000,0000000,};static unsigned short P2[] = {0031010,0055060,0100000,0000000,};static unsigned short P3[] = {0022123,0011431,0105056,0001560,};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef IBMPCstatic unsigned short P1[] = {0x0000,0x5400,0x21fb,0x4009};static unsigned short P2[] = {0x0000,0x1000,0x0b46,0x3e21};static unsigned short P3[] = {0xc06e,0x3145,0x6263,0x3c6a};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endif#ifdef MIEEEstatic unsigned short P1[] = {0x4009,0x21fb,0x5400,0x0000};static unsigned short P2[] = {0x3e21,0x0b46,0x1000,0x0000};static unsigned short P3[] = {0x3c6a,0x6263,0x3145,0xc06e};#define DP1 *(double *)P1#define DP2 *(double *)P2#define DP3 *(double *)P3#endifstatic doubleredupi(x) double x;{ double t; long i; t = x/PI; if( t >= 0.0 ) t += 0.5; else t -= 0.5; i = t; /* the multiple */ t = i; t = ((x - t * DP1) - t * DP2) - t * DP3; return (t);}/* Taylor series expansion for cosh(2y) - cos(2x) */static doublectans (z) double complex z;{ double f, x, x2, y, y2, rn, t; double d; x = fabs (2.0 * creal (z)); y = fabs (2.0 * cimag(z)); x = redupi(x); x = x * x; y = y * y; x2 = 1.0; y2 = 1.0; f = 1.0; rn = 0.0; d = 0.0; do { rn += 1.0; f *= rn; rn += 1.0; f *= rn; x2 *= x; y2 *= y; t = y2 + x2; t /= f; d += t; rn += 1.0; f *= rn; rn += 1.0; f *= rn; x2 *= x; y2 *= y; t = y2 - x2; t /= f; d += t; } while (fabs(t/d) > MACHEP); return (d);}/* casin() * * Complex circular arc sine * * * * SYNOPSIS: * * double complex casin(); * double complex z, w; * * w = casin (z); * * * * DESCRIPTION: * * Inverse complex sine: * * 2 * w = -i clog( iz + csqrt( 1 - z ) ). * * casin(z) = -i casinh(iz) * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC -10,+10 10100 2.1e-15 3.4e-16 * IEEE -10,+10 30000 2.2e-14 2.7e-15 * Larger relative error can be observed for z near zero.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -