⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 som_distortion.html

📁 Kohonen的SOM软件包
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"><html><head><title>SOM Toolbox / som_distortion </title></head><body bgcolor=#f0f0f0><table border=0 width="100%" cellpadding=0 cellspacing=0><tr><td valign=baseline><font size=+2>SOM Toolbox</font></td><td valign=baseline align=center><a href="somtoolbox.html">Online documentation</td><td valign=baseline align=right><a href="http://www.cis.hut.fi/projects/somtoolbox/" target="_top">http://www.cis.hut.fi/projects/somtoolbox/</a></td></tr></table><hr><H1> som_distortion </H1><P><B> [adm,admu,tdmu] = som_distortion(sM, D, arg1, arg2)</B></P><PRE>SOM_DISTORTION Calculate distortion measure for the map. [adm,admu,tdmu] = som_distortion(sMap, D, [radius], ['prob'])  adm = som_distortion(sMap,D);  [adm,admu] = som_distortion(sMap,D);  som_show(sMap,'color',admu);  Input and output arguments:    sMap     (struct) a map struct   D        (struct) a data struct            (matrix) size dlen x dim, a data matrix   [radius] (scalar) neighborhood function radius to be used.                     Defaults to the last radius_fin in the                      trainhist field of the map struct, or 1 if                     that is missing.   ['prob'] (string) If given, this argument forces the                      neigborhood function values for each map                     unit to be normalized so that they sum to 1.   adm      (scalar) average distortion measure (sum(dm)/dlen)   admu     (vector) size munits x 1, average distortion in each unit    tdmu     (vector) size munits x 1, total distortion for each unit The distortion measure is defined as:                                            2    E = sum sum h(bmu(i),j) ||m(j) - x(i)||          i   j      where m(i) is the ith prototype vector of SOM, x(j) is the jth data vector, and h(.,.) is the neighborhood function. In case of fixed neighborhood and discreet data, the distortion measure can be interpreted as the energy function of the SOM. Note, though, that the learning rule that follows from the distortion measure is different from the SOM training rule, so SOM only minimizes the distortion measure approximately.  If the 'prob' argument is given, the distortion measure can be  interpreted as an expected quantization error when the neighborhood  function values give the likelyhoods of accidentally assigning  vector j to unit i. The normal quantization error is a special case  of this with zero incorrect assignement likelihood.   NOTE: when calculating BMUs and distances, the mask of the given        map is used. See also SOM_QUALITY, SOM_BMUS, SOM_HITS.</PRE><p><hr><br><center>[ <a href="somtoolbox.html">SOM Toolbox online doc</a> ]</center><br><!-- Last updated: May 30 2002 --></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -