⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 som_neighborhood.html

📁 Kohonen的SOM软件包
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"><html><head><title>SOM Toolbox / som_neighborhood </title></head><body bgcolor=#f0f0f0><table border=0 width="100%" cellpadding=0 cellspacing=0><tr><td valign=baseline><font size=+2>SOM Toolbox</font></td><td valign=baseline align=center><a href="somtoolbox.html">Online documentation</td><td valign=baseline align=right><a href="http://www.cis.hut.fi/projects/somtoolbox/" target="_top">http://www.cis.hut.fi/projects/somtoolbox/</a></td></tr></table><hr><H1> som_neighborhood </H1><H3> Purpose </H3><PRE> Calculate to which neighborhood each map unit belongs to relative to each other map unit, given the units in 1-neighborhood of each unit.</PRE><H3> Syntax </H3><UL><PRE>  Ne = som_neighborhood(Ne1);  Ne = som_neighborhood(Ne1,n);</PRE></UL><H3> Description </H3><PRE> For each map unit, finds the minimum neighborhood to which it belongs to relative to each other map unit. Or, equivalently, for each map  unit, finds which units form its k-neighborhood, where k goes from  0 to n.  The neighborhood is calculated iteratively using the reflexivity of neighborhood.     let  N1i  be the 1-neighborhood set a unit i and let  N11i be the set of units in the 1-neighborhood of any unit j in N1i     then N2i  (the 2-neighborhood set of unit i) is N11i \ N1i Consider, for example, the case of a 5x5 map. The neighborhood in case of 'rect' and 'hexa' lattices (and 'sheet' shape) for the unit at the center of the map are depicted below:    'rect' lattice           'hexa' lattice   --------------           --------------   4  3  2  3  4            3  2  2  2  3   3  2  1  2  3             2  1  1  2  3   2  1  0  1  2            2  1  0  1  2   3  2  1  2  3             2  1  1  2  3   4  3  2  3  4            3  2  2  2  3 Because the iterative procedure is rather slow, the neighborhoods  are calculated upto given maximal value. The uncalculated values in the returned matrix are Inf:s.</PRE><H3> Required input arguments </H3><PRE>  Ne1   (matrix) Each row contains 1, if the corresponding unit is adjacent                  for that map unit, 0 otherwise. This can be calculated                  using SOM_UNIT_NEIGHS. The matrix can be sparse.                 Size munits x munits.</PRE><H3> Optional input arguments </H3><PRE>  n     (scalar) Maximal neighborhood value which is calculated,                  Inf by default (all neighborhoods).</PRE><H3> Output arguments </H3><PRE>  Ne    (matrix) neighborhood values for each map unit, size is                 [munits, munits]. The matrix contains the minimum                 neighborhood of unit i, to which unit j belongs,                  or Inf, if the neighborhood was bigger than n.</PRE><H3> Examples </H3><PRE>  Ne = som_neighborhood(Ne1,1);    % upto 1-neighborhood  Ne = som_neighborhood(Ne1,Inf);  % all neighborhoods  Ne = som_neighborhood(som_unit_neighs(topol),4);</PRE><H3> See also </H3><TABLE NOBORDER WIDTH=80%><TR><TD><a href="som_unit_neighs.html"><B>som_unit_neighs</B></a><TD> Calculate units in 1-neighborhood for each map unit.<TR><TD><a href="som_unit_coords.html"><B>som_unit_coords</B></a><TD> Calculate grid coordinates.<TR><TD><a href="som_unit_dists.html"><B>som_unit_dists</B></a><TD> Calculate interunit distances.<TR><TD><a href="som_connection.html"><B>som_connection</B></a><TD> Connection matrix.</TABLE><p><hr><br><br><!-- Last updated: May 30 2002 --></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -