⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lvq1.html

📁 Kohonen的SOM软件包
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"><html><head><title>SOM Toolbox / lvq1 </title></head><body bgcolor=#f0f0f0><table border=0 width="100%" cellpadding=0 cellspacing=0><tr><td valign=baseline><font size=+2>SOM Toolbox</font></td><td valign=baseline align=center><a href="somtoolbox.html">Online documentation</td><td valign=baseline align=right><a href="http://www.cis.hut.fi/projects/somtoolbox/" target="_top">http://www.cis.hut.fi/projects/somtoolbox/</a></td></tr></table><hr><H1> lvq1 </H1><H3> Purpose </H3><PRE> Trains codebook with the LVQ1 -algorithm (described below).</PRE><H3> Syntax </H3><UL><PRE>  sM = lvq1(sM, D, rlen, alpha)</PRE></UL><H3> Description </H3><PRE> Trains codebook with the LVQ1 -algorithm. Codebook contains a number of vectors (mi, i=1,2,...,n) and so does data (vectors xj, j=1,2,...,k).  Both vector sets are classified: vectors may have a class (classes are set to the first column of data or map -structs' .labels -field). For each xj there is defined the nearest codebook -vector index c by searching the minimum of the euclidean distances between the current xj and codebook -vectors:    c = min{ ||xj - mi|| },  i=[1,..,n], for fixed xj         i If xj and mc belong to the same class, mc is updated as follows:    mc(t+1) = mc(t) + alpha * (xj(t) - mc(t)) If xj and mc belong to different classes, mc is updated as follows:    mc(t+1) = mc(t) - alpha * (xj(t) - mc(t)) Otherwise updating is not performed. Argument 'rlen' tells how many times training sequence is performed. LVQ1 -algorithm may be stopped after a number of steps, that is 30-50 times the number of codebook vectors. Argument 'alpha' is the learning rate, recommended to be smaller than 0.1. NOTE: does not take mask into account.</PRE><H3> References </H3><PRE> Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag,     Berlin, 1995, pp. 176-179. See also LVQ_PAK from http://www.cis.hut.fi/research/som_lvq_pak.shtml</PRE><H3> Required input arguments </H3><PRE>  sM                The data to be trained.          (struct)  A map struct.  D                 The data to use in training.          (struct)  A data struct.  rlen    (integer) Running length of LVQ1 -algorithm.  alpha   (float)   Learning rate used in training.</PRE><H3> Output arguments </H3><PRE>  codebook          Trained data.          (struct)  A map struct.</PRE><H3> Example </H3><PRE>   lab = unique(sD.labels(:,1));         % different classes   mu = length(lab)*5;                   % 5 prototypes for each       sM = som_randinit(sD,'msize',[mu 1]); % initial prototypes   sM.labels = [lab;lab;lab;lab;lab];    % their classes   sM = lvq1(sM,sD,50*mu,0.05);          % use LVQ1 to adjust                                         % the prototypes         sM = lvq3(sM,sD,50*mu,0.05,0.2,0.3);  % then use LVQ3 </PRE><H3> See also </H3><TABLE NOBORDER WIDTH=80%><TR><TD><a href="lvq3.html"><B>lvq3</B></a><TD> Use LVQ3 algorithm for training.<TR><TD><a href="som_supervised.html"><B>som_supervised</B></a><TD> Train SOM using supervised training.<TR><TD><a href="som_seqtrain.html"><B>som_seqtrain</B></a><TD> Train SOM with sequential algorithm.</TABLE><p><hr><br><br><!-- Last updated: May 30 2002 --></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -