⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cca.html

📁 Kohonen的SOM软件包
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"><html><head><title>SOM Toolbox / cca </title></head><body bgcolor=#f0f0f0><table border=0 width="100%" cellpadding=0 cellspacing=0><tr><td valign=baseline><font size=+2>SOM Toolbox</font></td><td valign=baseline align=center><a href="somtoolbox.html">Online documentation</td><td valign=baseline align=right><a href="http://www.cis.hut.fi/projects/somtoolbox/" target="_top">http://www.cis.hut.fi/projects/somtoolbox/</a></td></tr></table><hr><H1> cca </H1><P><B> [P] = cca(D, P, epochs, Mdist, alpha0, lambda0)</B></P><PRE>CCA Projects data vectors using Curvilinear Component Analysis. P = cca(D, P, epochs, [Dist], [alpha0], [lambda0])  P = cca(D,2,10);           % projects the given data to a plane  P = cca(D,pcaproj(D,2),5); % same, but with PCA initialization  P = cca(D, 2, 10, Dist);   % same, but the given distance matrix is used    Input and output arguments ([]'s are optional):   D          (matrix) the data matrix, size dlen x dim              (struct) data or map struct               P          (scalar) output dimension              (matrix) size dlen x odim, the initial projection   epochs     (scalar) training length   [Dist]     (matrix) pairwise distance matrix, size dlen x dlen.                       If the distances in the input space should                       be calculated otherwise than as euclidian                       distances, the distance from each vector                       to each other vector can be given here,                       size dlen x dlen. For example PDIST                       function can be used to calculate the                       distances: Dist = squareform(pdist(D,'mahal'));   [alpha0]   (scalar) initial step size, 0.5 by default   [lambda0]  (scalar) initial radius of influence, 3*max(std(D)) by default     P          (matrix) size dlen x odim, the projections Unknown values (NaN's) in the data: projections of vectors with unknown components tend to drift towards the center of the projection distribution. Projections of totally unknown vectors are set to unknown (NaN). See also SAMMON, PCAPROJ. </PRE><p><hr><br><center>[ <a href="somtoolbox.html">SOM Toolbox online doc</a> ]</center><br><!-- Last updated: May 30 2002 --></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -