⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 knn.html

📁 Kohonen的SOM软件包
💻 HTML
字号:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN"><html><head><title>SOM Toolbox / knn </title></head><body bgcolor=#f0f0f0><table border=0 width="100%" cellpadding=0 cellspacing=0><tr><td valign=baseline><font size=+2>SOM Toolbox</font></td><td valign=baseline align=center><a href="somtoolbox.html">Online documentation</td><td valign=baseline align=right><a href="http://www.cis.hut.fi/projects/somtoolbox/" target="_top">http://www.cis.hut.fi/projects/somtoolbox/</a></td></tr></table><hr><H1> knn </H1><P><B> [C,P]=knn(d, Cp, K)</B></P><PRE>KNN K-Nearest Neighbor classifier using an arbitrary distance matrix  [C,P]=knn(d, Cp, [K])  Input and output arguments ([]'s are optional):    d     (matrix) of size NxP: This is a precalculated dissimilarity (distance matrix).           P is the number of prototype vectors and N is the number of data vectors           That is, d(i,j) is the distance between data item i and prototype j.   Cp    (vector) of size Px1 that contains integer class labels. Cp(j) is the class of             jth prototype.   [K]   (scalar) the maximum K in K-NN classifier, default is 1   C     (matrix) of size NxK: integers indicating the class            decision for data items according to the K-NN rule for each K.           C(i,K) is the classification for data item i using the K-NN rule   P     (matrix) of size NxkxK: the relative amount of prototypes of            each class among the K closest prototypes for each classifiee.            That is, P(i,j,K) is the relative amount of prototypes of class j            among K nearest prototypes for data item i. If there is a tie between representatives of two or more classes among the K closest neighbors to the classifiee, the class i selected randomly  among these candidates. IMPORTANT  If K>1 this function uses 'sort' which is considerably slower than             'max' which is used for K=1. If K>1 the knn always calculates             results for all K-NN models from 1-NN up to K-NN.    EXAMPLE 1  sP;                           % a SOM Toolbox data struct containing labeled prototype vectors [Cp,label]=som_label2num(sP); % get integer class labels for prototype vectors                  sD;                           % a SOM Toolbox data struct containing vectors to be classified d=som_eucdist2(sD,sP);        % calculate euclidean distance matrix class=knn(d,Cp,10);           % classify using 1,2,...,10-rules class(:,5);                   % includes results for 5NN  label(class(:,5))             % original class labels for 5NN EXAMPLE 2 (leave-one-out-crossvalidate KNN for selection of proper K) P;                          % a data matrix of prototype vectors (rows) Cp;                         % column vector of integer class labels for vectors in P  d=som_eucdist2(P,P);        % calculate euclidean distance matrix PxP d(eye(size(d))==1)=NaN;     % set self-dissimilarity to NaN:                             % this drops the prototype itself away from its neighborhood                              % leave-one-out-crossvalidation (LOOCV) class=knn(d,Cp,size(P,1));  % classify using all possible K                             % calculate and plot LOOC-validated errors for all K failratep = ...  100*sum((class~=repmat(Cp,1,size(P,1))))./size(P,1); plot(1:size(P,1),failratep) </PRE><p><hr><br><center>[ <a href="somtoolbox.html">SOM Toolbox online doc</a> ]</center><br><!-- Last updated: May 30 2002 --></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -