📄 mkgaussian.m
字号:
% IM = mkGaussian(SIZE, COVARIANCE, MEAN, AMPLITUDE)% % Compute a matrix with dimensions SIZE (a [Y X] 2-vector, or a% scalar) containing a Gaussian function, centered at pixel position% specified by MEAN (default = (size+1)/2), with given COVARIANCE (can% be a scalar, 2-vector, or 2x2 matrix. Default = (min(size)/6)^2),% and AMPLITUDE. AMPLITUDE='norm' (default) will produce a% probability-normalized function. All but the first argument are% optional.% Eero Simoncelli, 6/96.function [res] = mkGaussian(sz, cov, mn, ampl)sz = sz(:);if (size(sz,1) == 1) sz = [sz,sz];end%------------------------------------------------------------%% OPTIONAL ARGS:if (exist('cov') ~= 1) cov = (min(sz(1),sz(2))/6)^2;endif (exist('mn') ~= 1) mn = (sz+1)/2;endif (exist('ampl') ~= 1) ampl = 'norm';end%------------------------------------------------------------[xramp,yramp] = meshgrid([1:sz(2)]-mn(2),[1:sz(1)]-mn(1));if (sum(size(cov)) == 2) % scalar if (strcmp(ampl,'norm')) ampl = 1/(2*pi*cov(1)); end e = (xramp.^2 + yramp.^2)/(-2 * cov);elseif (sum(size(cov)) == 3) % a 2-vector if (strcmp(ampl,'norm')) ampl = 1/(2*pi*sqrt(cov(1)*cov(2))); end e = xramp.^2/(-2 * cov(2)) + yramp.^2/(-2 * cov(1));else if (strcmp(ampl,'norm')) ampl = 1/(2*pi*sqrt(det(cov))); end cov = -inv(cov)/2; e = cov(2,2)*xramp.^2 + (cov(1,2)+cov(2,1))*(xramp.*yramp) ... + cov(1,1)*yramp.^2;end res = ampl .* exp(e);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -