📄 fdtd_3d.cpp
字号:
{
Fx_r = Fx[i][j][k];
Fx[i][j][k] = K_a[Ind[i][j][k]]*Fx[i][j][k] +
K_b[Ind[i][j][k]]*( (Hz[i][j][k] - Hz_recv_j[i][k])*inv_dy -
(Hy[i][j][k] - Hy_recv_k[i][j])*inv_dz );
Gx_r = Gx[i][j][k];
Gx[i][j][k] = K_Gx_a[j]*Gx[i][j][k] + K_Gx_b[j]*(Fx[i][j][k] - Fx_r);
Ex[i][j][k] = K_Ex_a[k]*Ex[i][j][k] +
K_Ex_b[k]*( K_Ex_c[i]*Gx[i][j][k] + K_Ex_d[i]*Gx_r);
}
j = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
for (k = 1; k < nlz; k++)
{
Fx_r = Fx[i][j][k];
Fx[i][j][k] = K_a[Ind[i][j][k]]*Fx[i][j][k] +
K_b[Ind[i][j][k]]*( (Hz[i][j][k] - Hz_recv_j[i][k])*inv_dy -
(Hy[i][j][k] - Hy[i][j][k-1])*inv_dz );
Gx_r = Gx[i][j][k];
Gx[i][j][k] = K_Gx_a[j]*Gx[i][j][k] + K_Gx_b[j]*(Fx[i][j][k] - Fx_r);
Ex[i][j][k] = K_Ex_a[k]*Ex[i][j][k] +
K_Ex_b[k]*( K_Ex_c[i]*Gx[i][j][k] + K_Ex_d[i]*Gx_r);
}
}
k = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
for (j = 1; j < nly; j++)
{
Fx_r = Fx[i][j][k];
Fx[i][j][k] = K_a[Ind[i][j][k]]*Fx[i][j][k] +
K_b[Ind[i][j][k]]*( (Hz[i][j][k] - Hz[i][j-1][k])*inv_dy -
(Hy[i][j][k] - Hy_recv_k[i][j])*inv_dz );
Gx_r = Gx[i][j][k];
Gx[i][j][k] = K_Gx_a[j]*Gx[i][j][k] + K_Gx_b[j]*(Fx[i][j][k] - Fx_r);
Ex[i][j][k] = K_Ex_a[k]*Ex[i][j][k] +
K_Ex_b[k]*( K_Ex_c[i]*Gx[i][j][k] + K_Ex_d[i]*Gx_r);
}
}
#pragma omp for schedule(dynamic,nr_threads)
for (i = 0; i < nlx; i++)
{
for (j = 1; j < nly; j++)
{
for (k = 1; k < nlz; k++)
{
Fx_r = Fx[i][j][k];
Fx[i][j][k] = K_a[Ind[i][j][k]]*Fx[i][j][k] +
K_b[Ind[i][j][k]]*( (Hz[i][j][k] - Hz[i][j-1][k])*inv_dy -
(Hy[i][j][k] - Hy[i][j][k-1])*inv_dz );
Gx_r = Gx[i][j][k];
Gx[i][j][k] = K_Gx_a[j]*Gx[i][j][k] +
K_Gx_b[j]*(Fx[i][j][k] - Fx_r);
Ex[i][j][k] = K_Ex_a[k]*Ex[i][j][k] +
K_Ex_b[k]*( K_Ex_c[i]*Gx[i][j][k] + K_Ex_d[i]*Gx_r);
}
}
}
}
////////////////////////////////////////////////////////////////////
//Total field scattered field formulation
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 1 && jel_TS == 1)
{
//j0 face
if(jel_TS_planes[2] == 1)
TS_Ex_j0();
//j1 face
if(jel_TS_planes[3] == 1)
TS_Ex_j1();
//k0 face
if(jel_TS_planes[4] == 1)
TS_Ex_k0();
//k1 face
if(jel_TS_planes[5] == 1)
TS_Ex_k1();
}
////////////////////////////////////////////////////////////////////
//Point source
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 0 && pt_source_Ex == 1 && n_Coord_ptSource > 0 && iter <= switch_off_time)
{
PtSource_J(Ex, time);
}
}
///////////////////////////////////////////////////////////////////////////////
//Update the Ex field components which will be send to other processes
///////////////////////////////////////////////////////////////////////////////
void CFDTD_3D::Update_Ex_send()
{
long i, j, k;
//update Ex_send_j
for (i = 0; i < nlx_Ex; i++)
{
for (k = 0; k < nlz_Ex; k++)
{
Ex_send_j[i][k] = Ex[i][0][k];
}
}
//update Ex_send_k
for (i = 0; i < nlx_Ex; i++)
{
for (j = 0; j < nly_Ex; j++)
{
Ex_send_k[i][j] = Ex[i][j][0];
}
}
}
///////////////////////////////////////////////////////////////////////////////////////
//Calculate the Ey field
///////////////////////////////////////////////////////////////////////////////////////
void CFDTD_3D::Calc_Ey(long nlx, long nly, long nlz)
{
long i, j, k;
double Fy_r, Gy_r;
if (myrank_i == iprocsMIN1)
{
nlx--;
}
if (myrank_k == kprocsMIN1)
{
nlz--;
}
#pragma omp parallel default(shared) private(i,j,k,Fy_r,Gy_r)
{
i = 0;
k = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (j = 0; j < nly; j++)
{
Fy_r = Fy[i][j][k];
Fy[i][j][k] = K_a[Ind[i][j][k]]*Fy[i][j][k] +
K_b[Ind[i][j][k]]*( (Hx[i][j][k] - Hx_recv_k[i][j])*inv_dz -
(Hz[i][j][k] - Hz_recv_i[j][k])*inv_dx );
Gy_r = Gy[i][j][k];
Gy[i][j][k] = K_Gy_a[k]*Gy[i][j][k] + K_Gy_b[k]*(Fy[i][j][k] - Fy_r);
Ey[i][j][k] = K_Ey_a[i]*Ey[i][j][k] +
K_Ey_b[i]*( K_Ey_c[j]*Gy[i][j][k] + K_Ey_d[j]*Gy_r);
}
k = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 1; i < nlx; i++)
{
for (j = 0; j < nly; j++)
{
Fy_r = Fy[i][j][k];
Fy[i][j][k] = K_a[Ind[i][j][k]]*Fy[i][j][k] +
K_b[Ind[i][j][k]]*( (Hx[i][j][k] - Hx_recv_k[i][j])*inv_dz -
(Hz[i][j][k] - Hz[i-1][j][k])*inv_dx );
Gy_r = Gy[i][j][k];
Gy[i][j][k] = K_Gy_a[k]*Gy[i][j][k] +
K_Gy_b[k]*(Fy[i][j][k] - Fy_r);
Ey[i][j][k] = K_Ey_a[i]*Ey[i][j][k] +
K_Ey_b[i]*( K_Ey_c[j]*Gy[i][j][k] + K_Ey_d[j]*Gy_r);
}
}
i = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (j = 0; j < nly; j++)
{
for (k = 1; k < nlz; k++)
{
Fy_r = Fy[i][j][k];
Fy[i][j][k] = K_a[Ind[i][j][k]]*Fy[i][j][k] +
K_b[Ind[i][j][k]]*( (Hx[i][j][k] - Hx[i][j][k-1])*inv_dz -
(Hz[i][j][k] - Hz_recv_i[j][k])*inv_dx );
Gy_r = Gy[i][j][k];
Gy[i][j][k] = K_Gy_a[k]*Gy[i][j][k] +
K_Gy_b[k]*(Fy[i][j][k] - Fy_r);
Ey[i][j][k] = K_Ey_a[i]*Ey[i][j][k] +
K_Ey_b[i]*( K_Ey_c[j]*Gy[i][j][k] + K_Ey_d[j]*Gy_r);
}
}
#pragma omp for schedule(dynamic,nr_threads)
for (i = 1; i < nlx; i++)
{
for (j = 0; j < nly; j++)
{
for (k = 1; k < nlz; k++)
{
Fy_r = Fy[i][j][k];
Fy[i][j][k] = K_a[Ind[i][j][k]]*Fy[i][j][k] +
K_b[Ind[i][j][k]]*( (Hx[i][j][k] - Hx[i][j][k-1])*inv_dz -
(Hz[i][j][k] - Hz[i-1][j][k])*inv_dx );
Gy_r = Gy[i][j][k];
Gy[i][j][k] = K_Gy_a[k]*Gy[i][j][k] +
K_Gy_b[k]*(Fy[i][j][k] - Fy_r);
Ey[i][j][k] = K_Ey_a[i]*Ey[i][j][k] +
K_Ey_b[i]*( K_Ey_c[j]*Gy[i][j][k] + K_Ey_d[j]*Gy_r);
}
}
}
}
////////////////////////////////////////////////////////////////////
//Total field scattered field formulation
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Ey_i0();
//i1 face
if(jel_TS_planes[1] == 1)
TS_Ey_i1();
//k0 face
if(jel_TS_planes[4] == 1)
TS_Ey_k0();
//k1 face
if(jel_TS_planes[5] == 1)
TS_Ey_k1();
}
////////////////////////////////////////////////////////////////////
//Point source
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 0 && pt_source_Ey == 1 && n_Coord_ptSource>0 && iter <= switch_off_time)
{
PtSource_J(Ey, time);
}
}
///////////////////////////////////////////////////////////////////////////////
//Update the Ey field components which will be send to other processes
///////////////////////////////////////////////////////////////////////////////
void CFDTD_3D::Update_Ey_send()
{
long i, j, k;
//update Ey_send_i
for (j = 0; j < nly_Ey; j++)
{
for (k = 0; k < nlz_Ey; k++)
{
Ey_send_i[j][k] = Ey[0][j][k];
}
}
//update Ey_send_k
for (i = 0; i < nlx_Ey; i++)
{
for (j = 0; j < nly_Ey; j++)
{
Ey_send_k[i][j] = Ey[i][j][0];
}
}
}
///////////////////////////////////////////////////////////////////////////////////////
//Calculate the Ez field
///////////////////////////////////////////////////////////////////////////////////////
void CFDTD_3D::Calc_Ez(long nlx, long nly, long nlz)
{
long i, j, k;
double Fz_r, Gz_r;
if (myrank_i == iprocsMIN1)
{
nlx--;
}
if (myrank_j == jprocsMIN1)
{
nly--;
}
#pragma omp parallel default(shared) private(i,j,k,Fz_r,Gz_r)
{
i = 0;
j = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (k = 0; k < nlz; k++)
{
Fz_r = Fz[i][j][k];
Fz[i][j][k] = K_a[Ind[i][j][k]]*Fz[i][j][k] +
K_b[Ind[i][j][k]]*( (Hy[i][j][k] - Hy_recv_i[j][k])*inv_dx -
(Hx[i][j][k] - Hx_recv_j[i][k])*inv_dy );
Gz_r = Gz[i][j][k];
Gz[i][j][k] = K_Gz_a[i]*Gz[i][j][k] + K_Gz_b[i]*(Fz[i][j][k] - Fz_r);
Ez[i][j][k] = K_Ez_a[j]*Ez[i][j][k] +
K_Ez_b[j]*( K_Ez_c[k]*Gz[i][j][k] + K_Ez_d[k]*Gz_r);
}
i = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (j = 1; j < nly; j++)
{
for (k = 0; k < nlz; k++)
{
Fz_r = Fz[i][j][k];
Fz[i][j][k] = K_a[Ind[i][j][k]]*Fz[i][j][k] +
K_b[Ind[i][j][k]]*( (Hy[i][j][k] - Hy_recv_i[j][k])*inv_dx -
(Hx[i][j][k] - Hx[i][j-1][k])*inv_dy );
Gz_r = Gz[i][j][k];
Gz[i][j][k] = K_Gz_a[i]*Gz[i][j][k] + K_Gz_b[i]*(Fz[i][j][k] - Fz_r);
Ez[i][j][k] = K_Ez_a[j]*Ez[i][j][k] +
K_Ez_b[j]*( K_Ez_c[k]*Gz[i][j][k] + K_Ez_d[k]*Gz_r);
}
}
j = 0;
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 1; i < nlx; i++)
{
for (k = 0; k < nlz; k++)
{
Fz_r = Fz[i][j][k];
Fz[i][j][k] = K_a[Ind[i][j][k]]*Fz[i][j][k] +
K_b[Ind[i][j][k]]*( (Hy[i][j][k] - Hy[i-1][j][k])*inv_dx -
(Hx[i][j][k] - Hx_recv_j[i][k])*inv_dy );
Gz_r = Gz[i][j][k];
Gz[i][j][k] = K_Gz_a[i]*Gz[i][j][k] + K_Gz_b[i]*(Fz[i][j][k] - Fz_r);
Ez[i][j][k] = K_Ez_a[j]*Ez[i][j][k] +
K_Ez_b[j]*( K_Ez_c[k]*Gz[i][j][k] + K_Ez_d[k]*Gz_r);
}
}
#pragma omp for schedule(dynamic,nr_threads)
for (i = 1; i < nlx; i++)
{
for (j = 1; j < nly; j++)
{
for (k = 0; k < nlz; k++)
{
Fz_r = Fz[i][j][k];
Fz[i][j][k] = K_a[Ind[i][j][k]]*Fz[i][j][k] +
K_b[Ind[i][j][k]]*( (Hy[i][j][k] - Hy[i-1][j][k])*inv_dx -
(Hx[i][j][k] - Hx[i][j-1][k])*inv_dy );
Gz_r = Gz[i][j][k];
Gz[i][j][k] = K_Gz_a[i]*Gz[i][j][k] +
K_Gz_b[i]*(Fz[i][j][k] - Fz_r);
Ez[i][j][k] = K_Ez_a[j]*Ez[i][j][k] +
K_Ez_b[j]*( K_Ez_c[k]*Gz[i][j][k] + K_Ez_d[k]*Gz_r);
}
}
}
}
////////////////////////////////////////////////////////////////////
//Total field scattered field formulation
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 1 && jel_TS == 1)
{
//i0 face
if(jel_TS_planes[0] == 1)
TS_Ez_i0();
//i1 face
if(jel_TS_planes[1] == 1)
TS_Ez_i1();
//j0 face
if(jel_TS_planes[2] == 1)
TS_Ez_j0();
//j1 face
if(jel_TS_planes[3] == 1)
TS_Ez_j1();
}
////////////////////////////////////////////////////////////////////
//Point source
////////////////////////////////////////////////////////////////////
if (jel_plane_wave == 0 && pt_source_Ez == 1 && n_Coord_ptSource > 0)
{
if (iter <= switch_off_time)
{
PtSource_J(Ez, time);
}
}
}
///////////////////////////////////////////////////////////////////////////////
//Update the Ez field components which will be send to other processes
///////////////////////////////////////////////////////////////////////////////
void CFDTD_3D::Update_Ez_send()
{
long i, j, k;
//update Ez_send_i
for (j = 0; j < nly_Ez; j++)
{
for (k = 0; k < nlz_Ez; k++)
{
Ez_send_i[j][k] = Ez[0][j][k];
}
}
//update Ez_send_j
for (i = 0; i < nlx_Ez; i++)
{
for (k = 0; k < nlz_Ez; k++)
{
Ez_send_j[i][k] = Ez[i][0][k];
}
}
}
///////////////////////////////////////////////////////////////////////////////////////
//Calculate the Hx field
///////////////////////////////////////////////////////////////////////////////////////
void CFDTD_3D::Calc_Hx(long nlx, long nly, long nlz)
{
long i, j, k;
double Bx_r;
long nlyMIN1 = nly - 1;
long nlzMIN1 = nlz - 1;
#pragma omp parallel default(shared) private(i,j,k,Bx_r)
{
j = nlyMIN1;
k = nlzMIN1;
if ( nly > 0 && nlz > 0 )
{
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
Bx_r = Bx[i][j][k];
Bx[i][j][k] = K_Bx_a[j]*Bx[i][j][k] +
K_Bx_b[j]*( (Ey_recv_k[i][j] - Ey[i][j][k])*inv_dz -
(Ez_recv_j[i][k] - Ez[i][j][k])*inv_dy);
Hx[i][j][k] = K_Hx_a[k]*Hx[i][j][k] +
K_Hx_b[k]*( K_Hx_c[i]*Bx[i][j][k] +
K_Hx_d[i]*Bx_r )/mu_r[Ind[i][j][k]];
}
}
k = nlzMIN1;
if ( nlz > 0 )
{
#pragma omp for schedule(dynamic,nr_threads) nowait
for (i = 0; i < nlx; i++)
{
for (j = 0; j < nlyMIN1; j++)
{
Bx_r = Bx[i][j][k];
Bx[i][j][k] = K_Bx_a[j]*Bx[i][j][k] +
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -