⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kconfig

📁 老版本的mtd-snap
💻
字号:
# drivers/mtd/maps/Kconfig# $Id: Kconfig,v 1.17 2005/05/13 09:45:48 joern Exp $menu "Self-contained MTD device drivers"	depends on MTD!=nconfig MTD_PMC551	tristate "Ramix PMC551 PCI Mezzanine RAM card support"	depends on MTD && PCI	---help---	  This provides a MTD device driver for the Ramix PMC551 RAM PCI card	  from Ramix Inc. <http://www.ramix.com/products/memory/pmc551.html>.	  These devices come in memory configurations from 32M - 1G.  If you	  have one, you probably want to enable this.	  If this driver is compiled as a module you get the ability to select	  the size of the aperture window pointing into the devices memory.	  What this means is that if you have a 1G card, normally the kernel	  will use a 1G memory map as its view of the device.  As a module,	  you can select a 1M window into the memory and the driver will	  "slide" the window around the PMC551's memory.  This was	  particularly useful on the 2.2 kernels on PPC architectures as there	  was limited kernel space to deal with.config MTD_PMC551_BUGFIX	bool "PMC551 256M DRAM Bugfix"	depends on MTD_PMC551	help	  Some of Ramix's PMC551 boards with 256M configurations have invalid	  column and row mux values.  This option will fix them, but will	  break other memory configurations.  If unsure say N.config MTD_PMC551_DEBUG	bool "PMC551 Debugging"	depends on MTD_PMC551	help	  This option makes the PMC551 more verbose during its operation and	  is only really useful if you are developing on this driver or	  suspect a possible hardware or driver bug.  If unsure say N.config MTD_MS02NV	tristate "DEC MS02-NV NVRAM module support"	depends on MTD && MACH_DECSTATION	help	  This is an MTD driver for the DEC's MS02-NV (54-20948-01) battery	  backed-up NVRAM module.  The module was originally meant as an NFS	  accelerator.  Say Y here if you have a DECstation 5000/2x0 or a	  DECsystem 5900 equipped with such a module.config MTD_SLRAM	tristate "Uncached system RAM"	depends on MTD	help	  If your CPU cannot cache all of the physical memory in your machine,	  you can still use it for storage or swap by using this driver to	  present it to the system as a Memory Technology Device.config MTD_PHRAM	tristate "Physical system RAM"	depends on MTD	help	  This is a re-implementation of the slram driver above.	  Use this driver to access physical memory that the kernel proper	  doesn't have access to, memory beyond the mem=xxx limit, nvram,	  memory on the video card, etc...config MTD_LART	tristate "28F160xx flash driver for LART"	depends on SA1100_LART && MTD	help	  This enables the flash driver for LART. Please note that you do	  not need any mapping/chip driver for LART. This one does it all	  for you, so go disable all of those if you enabled some of them (:config MTD_MTDRAM	tristate "Test driver using RAM"	depends on MTD	help	  This enables a test MTD device driver which uses vmalloc() to	  provide storage.  You probably want to say 'N' unless you're	  testing stuff.config MTDRAM_TOTAL_SIZE	int "MTDRAM device size in KiB"	depends on MTD_MTDRAM	default "4096"	help	  This allows you to configure the total size of the MTD device	  emulated by the MTDRAM driver.  If the MTDRAM driver is built	  as a module, it is also possible to specify this as a parameter when	  loading the module.config MTDRAM_ERASE_SIZE	int "MTDRAM erase block size in KiB"	depends on MTD_MTDRAM	default "128"	help	  This allows you to configure the size of the erase blocks in the	  device emulated by the MTDRAM driver.  If the MTDRAM driver is built	  as a module, it is also possible to specify this as a parameter when	  loading the module.#If not a module (I don't want to test it as a module)config MTDRAM_ABS_POS	hex "SRAM Hexadecimal Absolute position or 0"	depends on MTD_MTDRAM=y	default "0"	help	  If you have system RAM accessible by the CPU but not used by Linux	  in normal operation, you can give the physical address at which the	  available RAM starts, and the MTDRAM driver will use it instead of	  allocating space from Linux's available memory. Otherwise, leave 	  this set to zero. Most people will want to leave this as zero.config RAMTD	tristate "MTD using dynamic memory allocation"	depends on MTD	help	  This driver dynamically allocates memory as the devices are written	  to and frees it on erases.	  If unsure, say n.config MTD_BLKMTD	tristate "MTD emulation using block device"	depends on MTD	help	  This driver allows a block device to appear as an MTD. It would	  generally be used in the following cases:	  Using Compact Flash as an MTD, these usually present themselves to	  the system as an ATA drive.	  Testing MTD users (eg JFFS2) on large media and media that might	  be removed during a write (using the floppy drive).config MTD_BLOCK2MTD	tristate "MTD using block device (rewrite)"	depends on MTD && EXPERIMENTAL	help	  This driver is basically the same at MTD_BLKMTD above, but	  experienced some interface changes plus serious speedups.  In	  the long term, it should replace MTD_BLKMTD.  Right now, you	  shouldn't entrust important data to it yet.comment "Disk-On-Chip Device Drivers"config MTD_DOC2000	tristate "M-Systems Disk-On-Chip 2000 and Millennium (DEPRECATED)"	depends on MTD	select MTD_DOCPROBE	select MTD_NAND_IDS	---help---	  This provides an MTD device driver for the M-Systems DiskOnChip	  2000 and Millennium devices.  Originally designed for the DiskOnChip	  2000, it also now includes support for the DiskOnChip Millennium.	  If you have problems with this driver and the DiskOnChip Millennium,	  you may wish to try the alternative Millennium driver below. To use	  the alternative driver, you will need to undefine DOC_SINGLE_DRIVER	  in the <file:drivers/mtd/devices/docprobe.c> source code.	  If you use this device, you probably also want to enable the NFTL	  'NAND Flash Translation Layer' option below, which is used to	  emulate a block device by using a kind of file system on the flash	  chips.	  NOTE: This driver is deprecated and will probably be removed soon.	  Please try the new DiskOnChip driver under "NAND Flash Device	  Drivers".config MTD_DOC2001	tristate "M-Systems Disk-On-Chip Millennium-only alternative driver (DEPRECATED)"	depends on MTD	select MTD_DOCPROBE	select MTD_NAND_IDS	---help---	  This provides an alternative MTD device driver for the M-Systems 	  DiskOnChip Millennium devices.  Use this if you have problems with	  the combined DiskOnChip 2000 and Millennium driver above.  To get	  the DiskOnChip probe code to load and use this driver instead of	  the other one, you will need to undefine DOC_SINGLE_DRIVER near	  the beginning of <file:drivers/mtd/devices/docprobe.c>.	  If you use this device, you probably also want to enable the NFTL	  'NAND Flash Translation Layer' option below, which is used to	  emulate a block device by using a kind of file system on the flash	  chips.	  NOTE: This driver is deprecated and will probably be removed soon.	  Please try the new DiskOnChip driver under "NAND Flash Device	  Drivers".config MTD_DOC2001PLUS	tristate "M-Systems Disk-On-Chip Millennium Plus"	depends on MTD	select MTD_DOCPROBE	select MTD_NAND_IDS	---help---	  This provides an MTD device driver for the M-Systems DiskOnChip	  Millennium Plus devices.	  If you use this device, you probably also want to enable the INFTL	  'Inverse NAND Flash Translation Layer' option below, which is used	  to emulate a block device by using a kind of file system on the 	  flash chips.	  NOTE: This driver will soon be replaced by the new DiskOnChip driver	  under "NAND Flash Device Drivers" (currently that driver does not	  support all Millennium Plus devices).config MTD_DOCPROBE	tristate	select MTD_DOCECCconfig MTD_DOCECC	tristateconfig MTD_DOCPROBE_ADVANCED	bool "Advanced detection options for DiskOnChip"	depends on MTD_DOCPROBE	help	  This option allows you to specify nonstandard address at which to	  probe for a DiskOnChip, or to change the detection options.  You	  are unlikely to need any of this unless you are using LinuxBIOS.	  Say 'N'.config MTD_DOCPROBE_ADDRESS	hex "Physical address of DiskOnChip" if MTD_DOCPROBE_ADVANCED	depends on MTD_DOCPROBE	default "0x0000" if MTD_DOCPROBE_ADVANCED	default "0" if !MTD_DOCPROBE_ADVANCED	---help---	  By default, the probe for DiskOnChip devices will look for a	  DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.	  This option allows you to specify a single address at which to probe	  for the device, which is useful if you have other devices in that	  range which get upset when they are probed.	  (Note that on PowerPC, the normal probe will only check at	  0xE4000000.)	  Normally, you should leave this set to zero, to allow the probe at	  the normal addresses.config MTD_DOCPROBE_HIGH	bool "Probe high addresses"	depends on MTD_DOCPROBE_ADVANCED	help	  By default, the probe for DiskOnChip devices will look for a	  DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.	  This option changes to make it probe between 0xFFFC8000 and	  0xFFFEE000.  Unless you are using LinuxBIOS, this is unlikely to be	  useful to you.  Say 'N'.config MTD_DOCPROBE_55AA	bool "Probe for 0x55 0xAA BIOS Extension Signature"	depends on MTD_DOCPROBE_ADVANCED	help	  Check for the 0x55 0xAA signature of a DiskOnChip, and do not	  continue with probing if it is absent.  The signature will always be	  present for a DiskOnChip 2000 or a normal DiskOnChip Millennium.	  Only if you have overwritten the first block of a DiskOnChip	  Millennium will it be absent.  Enable this option if you are using	  LinuxBIOS or if you need to recover a DiskOnChip Millennium on which	  you have managed to wipe the first block.endmenu

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -