📄 rtc_from4.c
字号:
status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E; *rs_ecc_ctl = status; break; case NAND_ECC_READSYN : status = 0x00; *rs_ecc_ctl = status; break; case NAND_ECC_WRITE : status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E; *rs_ecc_ctl = status; break; default: BUG(); break; }}/* * rtc_from4_calculate_ecc - hardware specific code to read ECC code * @mtd: MTD device structure * @dat: buffer containing the data to generate ECC codes * @ecc_code ECC codes calculated * * The ECC code is calculated by the FPGA. All we have to do is read the values * from the FPGA registers. * * Note: We read from the inverted registers, since data is inverted before * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code * */static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){ volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); unsigned short value; int i; for (i = 0; i < 8; i++) { value = *rs_eccn; ecc_code[i] = (unsigned char)value; rs_eccn++; } ecc_code[7] |= 0x0f; /* set the last four bits (not used) */}/* * rtc_from4_correct_data - hardware specific code to correct data using ECC code * @mtd: MTD device structure * @buf: buffer containing the data to generate ECC codes * @ecc1 ECC codes read * @ecc2 ECC codes calculated * * The FPGA tells us fast, if there's an error or not. If no, we go back happy * else we read the ecc results from the fpga and call the rs library to decode * and hopefully correct the error. * */static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2){ int i, j, res; unsigned short status; uint16_t par[6], syn[6]; uint8_t ecc[8]; volatile unsigned short *rs_ecc; status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { return 0; } /* Read the syndrom pattern from the FPGA and correct the bitorder */ rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); for (i = 0; i < 8; i++) { ecc[i] = revbits[(*rs_ecc) & 0xFF]; rs_ecc++; } /* convert into 6 10bit syndrome fields */ par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) | (((uint16_t)ecc[1] << 8) & 0x300)]; par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) | (((uint16_t)ecc[2] << 6) & 0x3c0)]; par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) | (((uint16_t)ecc[3] << 4) & 0x3f0)]; par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) | (((uint16_t)ecc[4] << 2) & 0x3fc)]; par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) | (((uint16_t)ecc[6] << 8) & 0x300)]; par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0); /* Convert to computable syndrome */ for (i = 0; i < 6; i++) { syn[i] = par[0]; for (j = 1; j < 6; j++) if (par[j] != rs_decoder->nn) syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; /* Convert to index form */ syn[i] = rs_decoder->index_of[syn[i]]; } /* Let the library code do its magic.*/ res = decode_rs8(rs_decoder, (uint8_t *)buf, par, 512, syn, 0, NULL, 0xff, NULL); if (res > 0) { DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); } return res;}/** * rtc_from4_errstat - perform additional error status checks * @mtd: MTD device structure * @this: NAND chip structure * @state: state or the operation * @status: status code returned from read status * @page: startpage inside the chip, must be called with (page & this->pagemask) * * Perform additional error status checks on erase and write failures * to determine if errors are correctable. For this device, correctable * 1-bit errors on erase and write are considered acceptable. * * note: see pages 34..37 of data sheet for details. * */static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page){ int er_stat=0; int rtn, retlen; size_t len; uint8_t *buf; int i; this->cmdfunc (mtd, NAND_CMD_STATUS_CLEAR, -1, -1); if (state == FL_ERASING) { for (i=0; i<4; i++) { if (status & 1<<(i+1)) { this->cmdfunc (mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1); rtn = this->read_byte(mtd); this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1); if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { er_stat |= 1<<(i+1); /* err_ecc_not_avail */ } } } } else if (state == FL_WRITING) { /* single bank write logic */ this->cmdfunc (mtd, NAND_CMD_STATUS_ERROR, -1, -1); rtn = this->read_byte(mtd); this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1); if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { er_stat |= 1<<1; /* err_ecc_not_avail */ } else { len = mtd->oobblock; buf = kmalloc (len, GFP_KERNEL); if (!buf) { printk (KERN_ERR "rtc_from4_errstat: Out of memory!\n"); er_stat = 1; /* if we can't check, assume failed */ } else { /* recovery read */ /* page read */ rtn = nand_do_read_ecc (mtd, page, len, &retlen, buf, NULL, this->autooob, 1); if (rtn) { /* if read failed or > 1-bit error corrected */ er_stat |= 1<<1; /* ECC read failed */ } kfree(buf); } } } rtn = status; if (er_stat == 0) { /* if ECC is available */ rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */ } return rtn;}#endif/* * Main initialization routine */int __init rtc_from4_init (void){ struct nand_chip *this; unsigned short bcr1, bcr2, wcr2; int i; /* Allocate memory for MTD device structure and private data */ rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip), GFP_KERNEL); if (!rtc_from4_mtd) { printk ("Unable to allocate Renesas NAND MTD device structure.\n"); return -ENOMEM; } /* Get pointer to private data */ this = (struct nand_chip *) (&rtc_from4_mtd[1]); /* Initialize structures */ memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info)); memset((char *) this, 0, sizeof(struct nand_chip)); /* Link the private data with the MTD structure */ rtc_from4_mtd->priv = this; /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ bcr1 = *SH77X9_BCR1 & ~0x0002; bcr1 |= 0x0002; *SH77X9_BCR1 = bcr1; /* set */ bcr2 = *SH77X9_BCR2 & ~0x0c00; bcr2 |= 0x0800; *SH77X9_BCR2 = bcr2; /* set area 5 wait states */ wcr2 = *SH77X9_WCR2 & ~0x1c00; wcr2 |= 0x1c00; *SH77X9_WCR2 = wcr2; /* Set address of NAND IO lines */ this->IO_ADDR_R = rtc_from4_fio_base; this->IO_ADDR_W = rtc_from4_fio_base; /* Set address of hardware control function */ this->hwcontrol = rtc_from4_hwcontrol; /* Set address of chip select function */ this->select_chip = rtc_from4_nand_select_chip; /* command delay time (in us) */ this->chip_delay = 100; /* return the status of the Ready/Busy line */ this->dev_ready = rtc_from4_nand_device_ready;#ifdef RTC_FROM4_HWECC printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); this->eccmode = NAND_ECC_HW8_512; this->options |= NAND_HWECC_SYNDROME; /* return the status of extra status and ECC checks */ this->errstat = rtc_from4_errstat; /* set the nand_oobinfo to support FPGA H/W error detection */ this->autooob = &rtc_from4_nand_oobinfo; this->enable_hwecc = rtc_from4_enable_hwecc; this->calculate_ecc = rtc_from4_calculate_ecc; this->correct_data = rtc_from4_correct_data;#else printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); this->eccmode = NAND_ECC_SOFT;#endif /* set the bad block tables to support debugging */ this->bbt_td = &rtc_from4_bbt_main_descr; this->bbt_md = &rtc_from4_bbt_mirror_descr; /* Scan to find existence of the device */ if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { kfree(rtc_from4_mtd); return -ENXIO; } /* Perform 'device recovery' for each chip in case there was a power loss. */ for (i=0; i < this->numchips; i++) { deplete(rtc_from4_mtd, i); }#if RTC_FROM4_NO_VIRTBLOCKS /* use a smaller erase block to minimize wasted space when a block is bad */ /* note: this uses eight times as much RAM as using the default and makes */ /* mounts take four times as long. */ rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;#endif /* Register the partitions */ add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);#ifdef RTC_FROM4_HWECC /* We could create the decoder on demand, if memory is a concern. * This way we have it handy, if an error happens * * Symbolsize is 10 (bits) * Primitve polynomial is x^10+x^3+1 * first consecutive root is 0 * primitve element to generate roots = 1 * generator polinomial degree = 6 */ rs_decoder = init_rs(10, 0x409, 0, 1, 6); if (!rs_decoder) { printk (KERN_ERR "Could not create a RS decoder\n"); nand_release(rtc_from4_mtd); kfree(rtc_from4_mtd); return -ENOMEM; }#endif /* Return happy */ return 0;}module_init(rtc_from4_init);/* * Clean up routine */#ifdef MODULEstatic void __exit rtc_from4_cleanup (void){ /* Release resource, unregister partitions */ nand_release(rtc_from4_mtd); /* Free the MTD device structure */ kfree (rtc_from4_mtd);#ifdef RTC_FROM4_HWECC /* Free the reed solomon resources */ if (rs_decoder) { free_rs(rs_decoder); }#endif}module_exit(rtc_from4_cleanup);#endifMODULE_LICENSE("GPL");MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -