📄 rfc3588.txt
字号:
An interim accounting message provides a snapshot of usage during
a user's session. It is typically implemented in order to provide
for partial accounting of a user's session in the case of a device
reboot or other network problem prevents the reception of a
session summary message or session record.
Local Realm
A local realm is the administrative domain providing services to a
user. An administrative domain MAY act as a local realm for
certain users, while being a home realm for others.
Multi-session
A multi-session represents a logical linking of several sessions.
Multi-sessions are tracked by using the Acct-Multi-Session-Id. An
example of a multi-session would be a Multi-link PPP bundle. Each
leg of the bundle would be a session while the entire bundle would
be a multi-session.
Network Access Identifier
The Network Access Identifier, or NAI [NAI], is used in the
Diameter protocol to extract a user's identity and realm. The
identity is used to identify the user during authentication and/or
authorization, while the realm is used for message routing
purposes.
Proxy Agent or Proxy
In addition to forwarding requests and responses, proxies make
policy decisions relating to resource usage and provisioning.
This is typically accomplished by tracking the state of NAS
devices. While proxies typically do not respond to client
Requests prior to receiving a Response from the server, they may
originate Reject messages in cases where policies are violated.
As a result, proxies need to understand the semantics of the
messages passing through them, and may not support all Diameter
applications.
Realm
The string in the NAI that immediately follows the '@' character.
NAI realm names are required to be unique, and are piggybacked on
the administration of the DNS namespace. Diameter makes use of
the realm, also loosely referred to as domain, to determine
whether messages can be satisfied locally, or whether they must be
routed or redirected. In RADIUS, realm names are not necessarily
piggybacked on the DNS namespace but may be independent of it.
Calhoun, et al. Standards Track [Page 16]
RFC 3588 Diameter Based Protocol September 2003
Real-time Accounting
Real-time accounting involves the processing of information on
resource usage within a defined time window. Time constraints are
typically imposed in order to limit financial risk.
Relay Agent or Relay
Relays forward requests and responses based on routing-related
AVPs and realm routing table entries. Since relays do not make
policy decisions, they do not examine or alter non-routing AVPs.
As a result, relays never originate messages, do not need to
understand the semantics of messages or non-routing AVPs, and are
capable of handling any Diameter application or message type.
Since relays make decisions based on information in routing AVPs
and realm forwarding tables they do not keep state on NAS resource
usage or sessions in progress.
Redirect Agent
Rather than forwarding requests and responses between clients and
servers, redirect agents refer clients to servers and allow them
to communicate directly. Since redirect agents do not sit in the
forwarding path, they do not alter any AVPs transiting between
client and server. Redirect agents do not originate messages and
are capable of handling any message type, although they may be
configured only to redirect messages of certain types, while
acting as relay or proxy agents for other types. As with proxy
agents, redirect agents do not keep state with respect to sessions
or NAS resources.
Roaming Relationships
Roaming relationships include relationships between companies and
ISPs, relationships among peer ISPs within a roaming consortium,
and relationships between an ISP and a roaming consortium.
Security Association
A security association is an association between two endpoints in
a Diameter session which allows the endpoints to communicate with
integrity and confidentially, even in the presence of relays
and/or proxies.
Session
A session is a related progression of events devoted to a
particular activity. Each application SHOULD provide guidelines
as to when a session begins and ends. All Diameter packets with
the same Session-Identifier are considered to be part of the same
session.
Calhoun, et al. Standards Track [Page 17]
RFC 3588 Diameter Based Protocol September 2003
Session state
A stateful agent is one that maintains session state information,
by keeping track of all authorized active sessions. Each
authorized session is bound to a particular service, and its state
is considered active either until it is notified otherwise, or by
expiration.
Sub-session
A sub-session represents a distinct service (e.g., QoS or data
characteristics) provided to a given session. These services may
happen concurrently (e.g., simultaneous voice and data transfer
during the same session) or serially. These changes in sessions
are tracked with the Accounting-Sub-Session-Id.
Transaction state
The Diameter protocol requires that agents maintain transaction
state, which is used for failover purposes. Transaction state
implies that upon forwarding a request, the Hop-by-Hop identifier
is saved; the field is replaced with a locally unique identifier,
which is restored to its original value when the corresponding
answer is received. The request's state is released upon receipt
of the answer. A stateless agent is one that only maintains
transaction state.
Translation Agent
A translation agent is a stateful Diameter node that performs
protocol translation between Diameter and another AAA protocol,
such as RADIUS.
Transport Connection
A transport connection is a TCP or SCTP connection existing
directly between two Diameter peers, otherwise known as a Peer-
to-Peer Connection.
Upstream
Upstream is used to identify the direction of a particular
Diameter message from the access device towards the home server.
User
The entity requesting or using some resource, in support of which
a Diameter client has generated a request.
2. Protocol Overview
The base Diameter protocol may be used by itself for accounting
applications, but for use in authentication and authorization it is
always extended for a particular application. Two Diameter
applications are defined by companion documents: NASREQ [NASREQ],
Calhoun, et al. Standards Track [Page 18]
RFC 3588 Diameter Based Protocol September 2003
Mobile IPv4 [DIAMMIP]. These applications are introduced in this
document but specified elsewhere. Additional Diameter applications
MAY be defined in the future (see Section 11.3).
Diameter Clients MUST support the base protocol, which includes
accounting. In addition, they MUST fully support each Diameter
application that is needed to implement the client's service, e.g.,
NASREQ and/or Mobile IPv4. A Diameter Client that does not support
both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X
Client" where X is the application which it supports, and not a
"Diameter Client".
Diameter Servers MUST support the base protocol, which includes
accounting. In addition, they MUST fully support each Diameter
application that is needed to implement the intended service, e.g.,
NASREQ and/or Mobile IPv4. A Diameter Server that does not support
both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X
Server" where X is the application which it supports, and not a
"Diameter Server".
Diameter Relays and redirect agents are, by definition, protocol
transparent, and MUST transparently support the Diameter base
protocol, which includes accounting, and all Diameter applications.
Diameter proxies MUST support the base protocol, which includes
accounting. In addition, they MUST fully support each Diameter
application that is needed to implement proxied services, e.g.,
NASREQ and/or Mobile IPv4. A Diameter proxy which does not support
also both NASREQ and Mobile IPv4, MUST be referred to as "Diameter X
Proxy" where X is the application which it supports, and not a
"Diameter Proxy".
The base Diameter protocol concerns itself with capabilities
negotiation, how messages are sent and how peers may eventually be
abandoned. The base protocol also defines certain rules that apply
to all exchanges of messages between Diameter nodes.
Communication between Diameter peers begins with one peer sending a
message to another Diameter peer. The set of AVPs included in the
message is determined by a particular Diameter application. One AVP
that is included to reference a user's session is the Session-Id.
The initial request for authentication and/or authorization of a user
would include the Session-Id. The Session-Id is then used in all
subsequent messages to identify the user's session (see Section 8 for
more information). The communicating party may accept the request,
or reject it by returning an answer message with the Result-Code AVP
Calhoun, et al. Standards Track [Page 19]
RFC 3588 Diameter Based Protocol September 2003
set to indicate an error occurred. The specific behavior of the
Diameter server or client receiving a request depends on the Diameter
application employed.
Session state (associated with a Session-Id) MUST be freed upon
receipt of the Session-Termination-Request, Session-Termination-
Answer, expiration of authorized service time in the Session-Timeout
AVP, and according to rules established in a particular Diameter
application.
2.1. Transport
Transport profile is defined in [AAATRANS].
The base Diameter protocol is run on port 3868 of both TCP [TCP] and
SCTP [SCTP] transport protocols.
Diameter clients MUST support either TCP or SCTP, while agents and
servers MUST support both. Future versions of this specification MAY
mandate that clients support SCTP.
A Diameter node MAY initiate connections from a source port other
than the one that it declares it accepts incoming connections on, and
MUST be prepared to receive connections on port 3868. A given
Diameter instance of the peer state machine MUST NOT use more than
one transport connection to communicate with a given peer, unless
multiple instances exist on the peer in which case a separate
connection per process is allowed.
When no transport connection exists with a peer, an attempt to
connect SHOULD be periodically made. This behavior is handled via
the Tc timer, whose recommended value is 30 seconds. There are
certain exceptions to this rule, such as when a peer has terminated
the transport connection stating that it does not wish to
communicate.
When connecting to a peer and either zero or more transports are
specified, SCTP SHOULD be tried first, followed by TCP. See Section
5.2 for more information on peer discovery.
Diameter implementations SHOULD be able to interpret ICMP protocol
port unreachable messages as explicit indications that the server is
not reachable, subject to security policy on trusting such messages.
Diameter implementations SHOULD also be able to interpret a reset
from the transport and timed-out connection attempts.
Calhoun, et al. Standards Track [Page 20]
RFC 3588 Diameter Based Protocol September 2003
If Diameter receives data up from TCP that cannot be parsed or
identified as a Diameter error made by the peer, the stream is
compromised and cannot be recovered. The transport connection MUST
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -