⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 c4_5.m

📁 模式分类(杜达)(第二版)电子书 及原书中的代码。绝对值得永久收藏。
💻 M
字号:
function test_targets = C4_5(train_patterns, train_targets, test_patterns, inc_node)

% Classify using Quinlan's C4.5 algorithm
% Inputs:
% 	training_patterns   - Train patterns
%	training_targets	- Train targets
%   test_patterns       - Test  patterns
%	inc_node            - Percentage of incorrectly assigned samples at a node
%
% Outputs
%	test_targets        - Predicted targets

%NOTE: In this implementation it is assumed that a pattern vector with fewer than 10 unique values (the parameter Nu)
%is discrete, and will be treated as such. Other vectors will be treated as continuous

[Ni, M]		= size(train_patterns);
inc_node    = inc_node*M/100;
Nu          = 10;

%Find which of the input patterns are discrete, and discretisize the corresponding
%dimension on the test patterns
discrete_dim = zeros(1,Ni);
for i = 1:Ni,
   Nb = length(unique(train_patterns(i,:)));
   if (Nb <= Nu),
      %This is a discrete pattern
      discrete_dim(i)	= Nb;
      [H, test_patterns(i,:)]	= high_histogram(test_patterns(i,:), Nb);
   end
end

%Build the tree recursively
disp('Building tree')
tree            = make_tree(train_patterns, train_targets, inc_node, discrete_dim, max(discrete_dim), 0);

%Classify test samples
disp('Classify test samples using the tree')
test_targets    = use_tree(test_patterns, 1:size(test_patterns,2), tree, discrete_dim, unique(train_targets));

%END

function targets = use_tree(patterns, indices, tree, discrete_dim, Uc)
%Classify recursively using a tree

targets = zeros(1, size(patterns,2));

if (tree.dim == 0)
   %Reached the end of the tree
   targets(indices) = tree.child;
   return
end
        
%This is not the last level of the tree, so:
%First, find the dimension we are to work on
dim = tree.dim;
dims= 1:size(patterns,1);

%And classify according to it
if (discrete_dim(dim) == 0),
   %Continuous pattern
   in				= indices(find(patterns(dim, indices) <= tree.split_loc));
   targets		= targets + use_tree(patterns(dims, :), in, tree.child(1), discrete_dim(dims), Uc);
   in				= indices(find(patterns(dim, indices) >  tree.split_loc));
   targets		= targets + use_tree(patterns(dims, :), in, tree.child(2), discrete_dim(dims), Uc);
else
   %Discrete pattern
   Uf				= unique(patterns(dim,:));
	for i = 1:length(Uf),
	   in   	   = indices(find(patterns(dim, indices) == Uf(i)));
      targets	= targets + use_tree(patterns(dims, :), in, tree.child(i), discrete_dim(dims), Uc);
   end
end
    
%END use_tree 

function tree = make_tree(patterns, targets, inc_node, discrete_dim, maxNbin, base)
%Build a tree recursively

[Ni, L]    					= size(patterns);
Uc         					= unique(targets);
tree.dim						= 0;
%tree.child(1:maxNbin)	= zeros(1,maxNbin);
tree.split_loc				= inf;

if isempty(patterns),
   return
end

%When to stop: If the dimension is one or the number of examples is small
if ((inc_node > L) | (L == 1) | (length(Uc) == 1)),
   H					= hist(targets, length(Uc));
   [m, largest] 	= max(H);
   tree.child	 	= Uc(largest);
   return
end

%Compute the node's I
for i = 1:length(Uc),
    Pnode(i) = length(find(targets == Uc(i))) / L;
end
Inode = -sum(Pnode.*log(Pnode)/log(2));

%For each dimension, compute the gain ratio impurity
%This is done separately for discrete and continuous patterns
delta_Ib    = zeros(1, Ni);
split_loc	= ones(1, Ni)*inf;

for i = 1:Ni,
   data	= patterns(i,:);
   Nbins	= length(unique(data));
   if (discrete_dim(i)),
      %This is a discrete pattern
		P	= zeros(length(Uc), Nbins);
      for j = 1:length(Uc),
         for k = 1:Nbins,
            indices 	= find((targets == Uc(j)) & (patterns(i,:) == k));
            P(j,k) 	= length(indices);
         end
      end
      Pk          = sum(P);
      P           = P/L;
      Pk          = Pk/sum(Pk);
      info        = sum(-P.*log(eps+P)/log(2));
      delta_Ib(i) = (Inode-sum(Pk.*info))/-sum(Pk.*log(eps+Pk)/log(2));
   else
      %This is a continuous pattern
      P	= zeros(length(Uc), 2);
      
      %Sort the patterns
      [sorted_data, indices] = sort(data);
      sorted_targets = targets(indices);
      
      %Calculate the information for each possible split
      I	= zeros(1, L-1);
      for j = 1:L-1,
         for k =1:length(Uc),
            P(k,1) = length(find(sorted_targets(1:j) 		== Uc(k)));
            P(k,2) = length(find(sorted_targets(j+1:end) == Uc(k)));
         end
         Ps		= sum(P)/L;
         P		= P/L;
         info	= sum(-P.*log(eps+P)/log(2));
         I(j)	= Inode - sum(info.*Ps);   
      end
      [delta_Ib(i), s] = max(I);
		split_loc(i) = sorted_data(s);      
   end
end

%Find the dimension minimizing delta_Ib 
[m, dim] = max(delta_Ib);
dims		= 1:Ni;
tree.dim = dim;

%Split along the 'dim' dimension
Nf		= unique(patterns(dim,:));
Nbins	= length(Nf);
if (discrete_dim(dim)),
   %Discrete pattern
   for i = 1:Nbins,
      indices    		= find(patterns(dim, :) == Nf(i));
      tree.child(i)	= make_tree(patterns(dims, indices), targets(indices), inc_node, discrete_dim(dims), maxNbin, base);
   end
else
   %Continuous pattern
   tree.split_loc		= split_loc(dim);
   indices1		   	= find(patterns(dim,:) <= split_loc(dim));
   indices2	   		= find(patterns(dim,:) > split_loc(dim));
   tree.child(1)		= make_tree(patterns(dims, indices1), targets(indices1), inc_node, discrete_dim(dims), maxNbin);
   tree.child(2)		= make_tree(patterns(dims, indices2), targets(indices2), inc_node, discrete_dim(dims), maxNbin);
end

	

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -