⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wienerprocess.hpp

📁 dysii是一款非常出色的滤波函数库
💻 HPP
📖 第 1 页 / 共 2 页
字号:
#ifndef INDII_ML_AUX_WIENERPROCESS_HPP#define INDII_ML_AUX_WIENERPROCESS_HPP#include "StochasticProcess.hpp"namespace indii {  namespace ml {    namespace aux {/** * Multivariate Wiener process. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 366 $ * @date $Date: 2008-01-22 17:40:25 +0000 (Tue, 22 Jan 2008) $ * * The Wiener process, \f$W(t)\f$, is a diffusion process where * \f$W(t+\Delta t) - W(t) \sim \mathcal{N}(0, \sqrt{\Delta t})\f$, with * the properties of: * * @li being Markovian, * @li having continuous sample paths which are nowhere * differentiable, and * @li having highly irregular sample paths, with mean approaching * zero but variance approaching infinity as \f$\Delta t \rightarrow * \infty\f$. *  * Given the properties of deterministic functions, point 2 seems * self-contradicting, but such is the nature of stochastic processes! * * This implementation is generalised to allow a nonzero drift * \f$\mathbf{\mu}\f$ (expectation per unit time), and arbitrary * diffusion \f$\Sigma\f$ (covariance per unit time), so that the * process is given by: * * \f[ * d\mathbf{x} = \mathbf{\mu}\,dt + L\,d\mathbf{W}, * \f] * * where \f$\Sigma = LL^T\f$ (Cholesky decomposition) and the * \f$dW_i\f$ are independent, standard (zero drift, unit variance per * unit time) Wiener processes. */template <class T = unsigned int>class WienerProcess : public StochasticProcess<T> {public:  /**   * Default constructor.   *   * Initialises the Wiener process with zero dimensions. This should   * generally only be used when the object is to be restored from a   * serialization.   */  WienerProcess();  /**   * Construct Wiener process with given drift and diffusion.   *   * @param mu \f$\mathbf{\mu}\f$; drift of the process.   * @param sigma \f$\Sigma\f$; diffusion of the process.   */  WienerProcess(const vector& mu, const symmetric_matrix& sigma);  /**   * Construct Wiener process of given dimensionality.   *   * @param N \f$N\f$; number of dimensions in the process.   *   * The drift is initialised to zero and the diffusion to the   * identity matrix, giving the standard Wiener process. These may be   * modified with setDrift() and setDiffusion().   */  WienerProcess(unsigned int N);  /**   * Destructor.   */  virtual ~WienerProcess();  /**   * Assignment operator.   */  WienerProcess<T>& operator=(const WienerProcess<T>& o);    virtual unsigned int getDimensions() const;  virtual void setDimensions(const unsigned int N,      const bool preserve = false);  /**   * Get the drift of the process.   *   * @return The drift of the process.   */  virtual const vector& getDrift() const;  /**   * Get the diffusion of the process.   *   * @return The diffusion of the process.   */  virtual const symmetric_matrix& getDiffusion() const;  virtual const vector& getDrift();  virtual const symmetric_matrix& getDiffusion();  /**   * Set the drift of the process. The new drift vector must have the   * same size as the previous one.   *   * @param mu \f$\mathbf{\mu}\f$; drift of the process.   */  virtual void setDrift(const vector& mu);  /**   * Set the diffusion of the Gaussian. The new diffusion matrix   * must have the same size as the previous one.   *   * @param sigma \f$\Sigma\f$; diffusion of the process.   */  virtual void setDiffusion(const symmetric_matrix& sigma);  virtual vector getExpectation(const T delta);  virtual symmetric_matrix getCovariance(const T delta);  /**   * Get the expected value of the process after a given time has   * elapsed.   *   * @param delta \f$\Delta t\f$; elapsed time.   *   * @return \f$\mathbf{\mu}(\Delta t)\f$; expected value of the process   * after time \f$\Delta t\f$.   */  virtual vector getExpectation(const T delta) const;  /**   * Get the covariance of the process after a given time has elapsed.   *   * @param delta \f$\Delta t\f$; elapsed time.   *   * @return \f$\Sigma(\Delta t)\f$; covariance of the process after   * time \f$\Delta t\f$.   */  virtual symmetric_matrix getCovariance(const T delta) const;  /**   * Sample from the process after a given time has elapsed.   *   * @param delta \f$\Delta t\f$; elapsed time.   *   * This is performed using the following process:   *   * @li Let \f$\mathbf{z}\f$ be a vector of \f$N\f$ independent   * normal variates with mean zero and variance \f$\Delta t\f$.   *   * @li Then the sample is \f$\mathbf{x} = \Delta t \mathbf{\mu} +   * L\mathbf{z}\f$, where \f$L\f$ is the Cholesky decomposition of   * the diffusion.   *   * @return The sample \f$\mathbf{x}\f$   */  virtual vector sample(const T delta);  /**   * Calculate the density of the distribution at a given point after   * a given time has elapsed:   *   * \f[p(\mathbf{x},\Delta t) =   *   \frac{1}{\sqrt{(2\pi\Delta t)^N|\Sigma|}}   *   \exp\big({-\frac{1}{2\Delta t}(\mathbf{x}-\mathbf{\mu})^T \Sigma^{-1}    *   (\mathbf{x}-\mathbf{\mu})\big)}   * \f]   *   * @param delta \f$\Delta t\f$; elapsed time.   * @param x \f$\mathbf{x}\f$; the point at which to calculate the   * density.   *   * @return The density of the distribution at \f$\mathbf{x}\f$ after   * time \f$\Delta t\f$.   */  virtual double densityAt(const T delta, const vector& x);  /**   * @deprecated Use densityAt() instead.   */  double calculateDensity(const T delta, const vector& x);protected:  /**   * Called when changes are made to the process, such as when the   * drift or diffusion is changed. This allows pre-calculations to be   * refreshed.   */  virtual void dirty();private:  /**   * \f$N\f$; number of dimensions.   */  unsigned int N;  /**   * \f$\mu\f$; drift.   */  vector mu;  /**   * \f$\Sigma\f$; diffusion.   */  symmetric_matrix sigma;  /**   * \f$L\f$ where \f$\Sigma = LL^T\f$ is the Cholesky decomposition   * of the covariance matrix.   */  lower_triangular_matrix L;  /**   * \f$\Sigma^{-1}\f$   */  symmetric_matrix sigmaI;  /**   * Diagonal of \f$\Sigma^{-1}\f$.   */  vector sigmaIDiag;  /**   * \f$\det(\Sigma)\f$   */  double sigmaDet;  /**   * \f$\frac{1}{Z}\f$   */  double ZI;  /**   * Is the expectation zero?   */  bool isMuZero;  /**   * Is the diffusion matrix diagonal?   */  bool isSigmaIDiagonal;  /**   * Has the Cholesky decomposition of the covariance matrix been computed?   */  bool haveCholesky;  /**   * Has the inverse of the covariance matrix been computed?   */  bool haveInverse;  /**   * Has the determinant of the covariance matrix been computed?   */  bool haveDeterminant;  /**   * Has the normalising constant for the density function been   * computed (up to \f$1/(\Delta t)^{N/2}\f$)?   */  bool haveZ;  /**   * Have optimisations for density calculations been determined?   */  bool haveDensityOptimisations;  /**   * Calculate the Cholesky decomposition of the covariance matrix.   */  void calculateCholesky();  /**   * Calculate the inverse of the diffusion matrix. This exploits the   * calculation of the Cholesky decomposition   */  void calculateInverse();  /**   * Calculate the determinant of the diffusion matrix,   * \f$|\Sigma|\f$. This exploits the calculation of the Cholesky   * decomposition \f$L\f$. For any matrices \f$A\f$ and \f$B\f$,   * \f$|AB| = |A||B|\f$. Given that \f$\Sigma = LL^T\f$, \f$|\Sigma|   * = |L|^2\f$. The determinant of a triangular matrix is simply the   * product of the elements on its diagonal, so \f$|L|\f$ is easy to   * calculate.   */  void calculateDeterminant();  /**   * Calculate part of the normalising constant, \f$\frac{1}{Z}\f$ for   * the density function.   *   * \f[\sqrt{(2\pi)^N|\Sigma|}\f]   *   * where the complete constant requires the additional   * time-dependent factor:   *   * \f[Z = (\Delta t)^{N/2}\f]   */  void calculateZ();  /**   * Calculate optimisations for the calculation of densities.   */  void calculateDensityOptimisations();  /**   * Serialize.   */  template<class Archive>  void save(Archive& ar, const unsigned int version) const;  /**   * Restore from serialization.   */  template<class Archive>  void load(Archive& ar, const unsigned int version);  /*   * Boost.Serialization requirements.   */  BOOST_SERIALIZATION_SPLIT_MEMBER()  friend class boost::serialization::access;};    }  }}#include "Random.hpp"#include "boost/numeric/bindings/traits/ublas_matrix.hpp"#include "boost/numeric/bindings/traits/ublas_vector.hpp"#include "boost/numeric/bindings/lapack/lapack.hpp"#include "boost/serialization/base_object.hpp"#include <assert.h>using namespace indii::ml::aux;namespace ublas = boost::numeric::ublas;namespace lapack = boost::numeric::bindings::lapack;template <class T>WienerProcess<T>::WienerProcess() : N(0), mu(0), sigma(0), L(0,0), sigmaI(0),    sigmaIDiag(0), haveCholesky(false), haveInverse(false),    haveDeterminant(false), haveZ(false), haveDensityOptimisations(false) {  //

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -