⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 densitytreepdf.hpp

📁 dysii是一款非常出色的滤波函数库
💻 HPP
字号:
#ifndef INDII_ML_AUX_DENSITYTREEPDF_HPP#define INDII_ML_AUX_DENSITYTREEPDF_HPP#include "Pdf.hpp"#include "DiracMixturePdf.hpp"#include "DensityTreeFactory.hpp"#include "DensityTreeNode.hpp"#include "DensityTreeInternal.hpp"#include "DensityTreeLeaf.hpp"namespace indii {  namespace ml {    namespace aux {/** * Probability density tree. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 401 $ * @date $Date: 2008-03-05 13:54:28 +0000 (Wed, 05 Mar 2008) $ * * Probability density tree implementation based on @ref Thrun1999 * "Thrun et al. (1999)". *  * @section DensityTreePdf_serialization Serialization * * This class supports serialization through the Boost.Serialization * library. * * @section DensityTreePdf_references References * * @anchor Thrun1999 * Thrun, S.; Langford, J. & Fox, D. Monte Carlo Hidden Markov Models: * Learning Non-Parametric Models of Partially Observable Stochastic * Processes. <i>Proceedings of the International Conference on * Machine Learning</i> <b>1999</b>. */class DensityTreePdf : public Pdf {public:  /**   * Default constructor.   *   * Initialises the density tree with zero dimensions. This should   * generally only be used when the object is to be restored from a   * serialization.   */  DensityTreePdf();  /**   * Constructor.   *    * @param p Weighted sample set from which to build the density tree.   *   * A default DensityTreeFactory will be used to construct the nodes of   * the tree.   */  DensityTreePdf(DiracMixturePdf& p);  /**   * Constructor.   *   * @param p Weighted sample set from which to build the density tree.   * @param factory Factory used to build nodes in the density tree. Use   * this to set options such as the node splitting strategy and \f$\rho\f$   * shrinkage parameter.   */  DensityTreePdf(DiracMixturePdf& p, const DensityTreeFactory& factory);  /**   * Copy constructor.   */  DensityTreePdf(const DensityTreePdf& o);    /**   * Destructor.   */  virtual ~DensityTreePdf();  /**   * Assignment operator. Both sides must have same dimensionality.   */  DensityTreePdf& operator=(const DensityTreePdf& o);  /**   * Get lower bound on the density tree.   *   * @return Lower bound on the density tree.   */  const vector& getLower() const;  /**   * Get upper bound on the density tree.   *   * @return Upper bound on the density tree.   */  const vector& getUpper() const;  virtual unsigned int getDimensions() const;  /**   * Not supported.   *   * @see Pdf::setDimensions()   */  virtual void setDimensions(const unsigned int N,      const bool preserve = false);    virtual const vector& getExpectation();  virtual const symmetric_matrix& getCovariance();  virtual vector sample();  virtual double densityAt(const vector& x);private:  /**   * \f$N\f$; number of dimensions.   */  unsigned int N;  /**   * \f$\mathbf{\mu}\f$; mean of the distribution.   */  vector mu;  /**   * \f$\Sigma\f$; covariance of the distribution.   */  symmetric_matrix sigma;  /**   * Has \f$\mathbf{\mu}\f$ been calculated?   */  bool haveMu;    /**   * Has \f$\Sigma\f$ been calculated?   */  bool haveSigma;  /**   * Root node of density tree.   */  DensityTreeNode* root;  /**   * Calculate expectation.   */  void calculateExpectation();  /**   * Calculate covariance.   */  void calculateCovariance();    /**   * Serialize.   */  template<class Archive>  void save(Archive& ar, const unsigned int version) const;  /**   * Restore from serialization.   */  template<class Archive>  void load(Archive& ar, const unsigned int version);  /*   * Boost.Serialization requirements.   */  BOOST_SERIALIZATION_SPLIT_MEMBER()  friend class boost::serialization::access;};    }  }}template<class Archive>void indii::ml::aux::DensityTreePdf::save(Archive& ar,    const unsigned int version) const {  ar & boost::serialization::base_object<Pdf>(*this);  ar & N;    /*   * To avoid inconvenient use of BOOST_CLASS_EXPORT by user for   * DensityTreeInternal and DensityTreeLeaf derived from DensityTreeNode,   * cast the root node to it's derived type to explicitly instantiate the   * serialization code for this type.   */  if (typeid(*root) == typeid(DensityTreeInternal)) {      const bool isLeaf = false;    const DensityTreeInternal* node =        static_cast<DensityTreeInternal*>(root);    ar & isLeaf;    ar & *node;  } else if (typeid(*root) == typeid(DensityTreeLeaf)) {    const bool isLeaf = true;    const DensityTreeLeaf* node =        static_cast<DensityTreeLeaf*>(root);    ar & isLeaf;    ar & *node;  } else {    assert(false);  }}template<class Archive>void indii::ml::aux::DensityTreePdf::load(Archive& ar,    const unsigned int version) {  bool isLeaf;  if (root != NULL) {    delete root;    root = NULL;  }    ar & boost::serialization::base_object<Pdf>(*this);  ar & N;  ar & isLeaf;    if (isLeaf) {    DensityTreeLeaf* node = new DensityTreeLeaf();    ar & *node;    root = node;  } else {    DensityTreeInternal* node = new DensityTreeInternal();    ar & *node;    root = node;  }  haveMu = false;  haveSigma = false;  mu.resize(N, false);  sigma.resize(N, false);}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -