⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 twofiltersmoother.hpp

📁 dysii是一款非常出色的滤波函数库
💻 HPP
字号:
#ifndef INDII_ML_FILTER_TWOFILTERSMOOTHER_HPP#define INDII_ML_FILTER_TWOFILTERSMOOTHER_HPP#include "../aux/vector.hpp"#include "../aux/Pdf.hpp"#include "Smoother.hpp"namespace indii {  namespace ml {    namespace filter {/** * Abstract smoother for estimating the state of a system by fusing * forward and backward filtering passes. * * @author Lawrence Murray <lawrence@indii.org> * @version $Rev: 344 $ * @date $Date: 2007-11-02 20:21:05 +0000 (Fri, 02 Nov 2007) $ * * @param T The type of time. * @param P The type of probability distribution used to represent the * system state. *  * @see indii::ml::filter for general usage guidelines. */template <class T = unsigned int, class P = indii::ml::aux::GaussianPdf>class TwoFilterSmoother : public Smoother<T,P> {public:  /**   * Constructor.   *   * @param p_x0 \f$P\big(\mathbf{x}(0)\big)\f$; prior over the   * initial state \f$\mathbf{x}(0)\f$.   */  TwoFilterSmoother(const P& p_x0);  /**   * Destructor.   */  virtual ~TwoFilterSmoother();  /**   * Get distribution over the state at the current time given present   * and future measurements.   *   * @return \f$P\big(\mathbf{x}(t_n)\, |   * \,\mathbf{y}(t_n),\ldots,\mathbf{y}(t_T)\big)\f$; distribution   * over the current state given present and future measurements.   */  const P& getBackwardFilteredState() const;  /**   * Set distribution over the state at the current time given present   * and future measurements.   *   * @param p_xtn_ytn \f$P\big(\mathbf{x}(t_n)\, |   * \,\mathbf{y}(t_n),\ldots,\mathbf{y}(t_T)\big)\f$; distribution   * over the current state given present and future measurements.   */  void getBackwardFilteredState(const P& p_xtn_ytn);  /**   * Rewind system to time of previous measurement and   * smooth. Performs the backward filtering step and fuses this with   * the given prediction from the forward filtering step to produce   * the smoothed prediction.   *   * @param tnm1 \f$t_{n-1}\f$; the time to which to rewind the   * system. This must be less than the current time \f$t_n\f$.   * @param ytnm1 \f$\mathbf{y}(t_{n-1})\f$; measurement at time   * \f$t_{n-1}\f$.   * @param p_xtnm1_ytnm1   * \f$P\big(\mathbf{x}(t_{n-1})\, |   * \,\mathbf{y}(t_1),\ldots,\mathbf{y}(t_{n-1})\big)\f$;   * distribution over the state at time \f$t_{n-1}\f$ given past and   * present measurements (i.e. the estimate from the forward   * filtering pass at time \f$t_{n-1}\f$).   */  virtual void smooth(T tnm1, const aux::vector& ytnm1,      const P& p_xtnm1_ytnm1) = 0;  /**   * Apply the measurement function to the current filtered state to   * obtain an estimated measurement.   *   * @return The estimated measurement.   */  virtual aux::GaussianPdf backwardMeasure() = 0;protected:  /**   * \f$P\big(\mathbf{x}(t_n)\, |   * \,\mathbf{y}(t_n),\ldots,\mathbf{y}(t_T)\big)\f$; distribution   * over the current state given present and future measurements. For   * internal use only.   */  P p_xtn_ytn_b;};    }  }}using namespace indii::ml::filter;template <class T, class P>TwoFilterSmoother<T,P>::TwoFilterSmoother(const P& x) :    Smoother<T,P>(x), p_xtn_ytn_b(x) {  //}template <class T, class P>TwoFilterSmoother<T,P>::~TwoFilterSmoother() {  //}template <class T, class P>const P& TwoFilterSmoother<T,P>::getBackwardFilteredState() const {  return this->p_xtn_ytn_b;}template <class T, class P>void TwoFilterSmoother<T,P>::getBackwardFilteredState(const P& p_xtn_ytn) {  this->p_xtn_ytn_b = p_xtn_ytn;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -