📄 test9.cpp
字号:
#include "indii/ml/aux/GaussianMixturePdf.hpp"#include "indii/ml/aux/GaussianPdf.hpp"#include "indii/ml/aux/DensityTreePdf.hpp"#include "indii/ml/aux/DiracMixturePdf.hpp"#include "indii/ml/aux/vector.hpp"#include "indii/ml/aux/matrix.hpp"#include "indii/ml/aux/Random.hpp"#include <gsl/gsl_statistics_double.h>#include <iostream>#include <fstream>using namespace std;namespace aux = indii::ml::aux;/** * @file test9.cpp * * Test of DensityTreePdf. * * This test: * * @li creates a random multivariate Gaussian mixture, * @li samples from this mixture and constructs a density tree, * @li compares the mean and covariance of the density tree with that of * the original mixture. * @li directly samples from the density tree and compares the mean and * covariance of this sample set with that of the original mixture. * @li importance samples from the density tree using a single Gaussian fit * to the original mixture and compares the mean and covariance of this * sample set with that of the original mixture. * * Results are as follows: * * @include test9.out * * \image html test9_mixture.png "Original Gaussian mixture" * \image latex test9_mixture.eps "Original Gaussian mixture" * \image html test9_tree.png "Density tree approximation" * \image latex test9_tree.eps "Density tree approximation" *//** * Dimensionality of the distribution. */unsigned int M = 2;/** * Number of components in the Gaussian mixture. */unsigned int COMPONENTS = 4;/** * Number of samples to take. */unsigned int P = 1000000;/** * Resolution of plots. */unsigned int RES = 200;/** * Create random Gaussian distribution. * * @param M Dimensionality of the Gaussian. * @param minMean Minimum value of any component of the mean. * @param maxMean Maximum value of any component of the mean. * @param minCov Minimum value of any component of the covariance. * @param maxCov Maximum value of any component of the covariance. * * @return Gaussian with given dimensionality, with mean and * covariance randomly generated uniformly from within the given * bounds. */aux::GaussianPdf createRandomGaussian(const unsigned int M, const double minMean = -1.0, const double maxMean = 1.0, const double minCov = -1.0, const double maxCov = 1.0) { aux::vector mu(M); aux::symmetric_matrix sigma(M); aux::lower_triangular_matrix L(M,M); unsigned int i, j; /* mean */ for (i = 0; i < M; i++) { mu(i) = aux::Random::uniform(minMean, maxMean); } /* covariance */ for (i = 0; i < M; i++) { for (j = 0; j <= i; j++) { L(i,j) = aux::Random::uniform(minCov, maxCov); } } sigma = prod(L, trans(L)); // ensures cholesky decomposable return aux::GaussianPdf(mu, sigma);}/** * Run tests. */int main(int argc, const char* argv[]) { unsigned int i, j; /* create distribution */ aux::GaussianMixturePdf mixture(M); for (i = 0; i < COMPONENTS; i++) { mixture.addComponent(createRandomGaussian(M), aux::Random::uniform(0.5,1.0)); } /* sample from distribution */ aux::DiracMixturePdf mixtureSamples(mixture, P); /* construct density tree */ aux::DensityTreeFactory factory(sqrt(P), 0.5*log(P)/log(2), 0.0, aux::DensityTreeFactory::SPLIT_VARIANCE); aux::DensityTreePdf tree(mixtureSamples, factory); /* sample from density tree */ aux::DiracMixturePdf treeSamples(tree, P); /* importance sample from density tree */ aux::GaussianPdf importance(mixture.getExpectation(), mixture.getCovariance()); aux::DiracMixturePdf treeImportanceSamples(M); double treeDensity, importanceDensity; aux::vector sample(M); for (i = 0; i < P; i++) { sample = importance.sample(); importanceDensity = importance.densityAt(sample); treeDensity = tree.densityAt(sample); treeImportanceSamples.addComponent(sample, treeDensity/importanceDensity); } cout << "Mixture mean" << endl << mixture.getExpectation() << endl; cout << "Mixture covariance" << endl << mixture.getCovariance() << endl; cout << "Sample mean" << endl << mixtureSamples.getExpectation() << endl; cout << "Sample covariance" << endl << mixtureSamples.getCovariance() << endl; cout << "Density tree mean" << endl << tree.getExpectation() << endl; cout << "Density tree covariance" << endl << tree.getCovariance() << endl; cout << "Density tree sample mean" << endl << treeSamples.getExpectation() << endl; cout << "Density tree sample covariance" << endl << treeSamples.getCovariance() << endl; cout << "Density tree importance sample mean" << endl << treeImportanceSamples.getExpectation() << endl; cout << "Density tree importance sample covariance" << endl << treeImportanceSamples.getCovariance() << endl; /* output for plots */ ofstream fMixture("results/test9_mixture.out"); ofstream fTree("results/test9_tree.out"); const aux::vector& lower = tree.getLower(); const aux::vector& upper = tree.getUpper(); aux::vector coord(M); double x, y, density; for (i = 0; i < RES; i++) { x = lower(0) + (upper(0) - lower(0)) * i / RES; coord(0) = x; for (j = 0; j < RES; j++) { y = lower(1) + (upper(1) - lower(1)) * j / RES; coord(1) = y; density = mixture.densityAt(coord); fMixture << x << '\t' << y << '\t' << density << endl; density = tree.densityAt(coord); fTree << x << '\t' << y << '\t' << density << endl; } /* end isolines */ fMixture << endl; fTree << endl; } return 0; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -