📄 particlefilterharness.cpp
字号:
#include "indii/ml/filter/ParticleFilter.hpp"#include "indii/ml/filter/DeterministicParticleResampler.hpp"#include "indii/ml/aux/DiracMixturePdf.hpp"#include "indii/ml/aux/vector.hpp"#include "indii/ml/aux/matrix.hpp"#include "MobileRobotParticleFilterModel.hpp"#include "MobileRobot.hpp"#include <math.h>#include <iostream>#include <fstream>#include <vector>#define SYSTEM_SIZE 5#define SYSTEM_NOISE_SIZE 2#define MEAS_SIZE 1#define MEAS_NOISE_SIZE 1#define ACTUAL_SIZE 3#define STEPS 250#define NUM_PARTICLES 1000using namespace std;using namespace indii::ml::filter;namespace aux = indii::ml::aux;/** * @file ParticleFilterHarness.cpp * * Basic test of ParticleFilter. * * Results are output into files as follows: * * @section actualPF results/ParticleFilterHarness_actual.out * * Actual state of the robot at each time. Columns are as follows: * * @li time * @li x coordinate * @li y coordinate * @li orientation (radians) * * @section measPF results/ParticleFilterHarness_meas.out * * Measurement at each time step. Columns are as follows: * * @li time * @li measurement * * @section predPF results/ParticleFilterHarness_pred.out * * Predicted state at each time step. Columns are as follows: * * @li time * @li mean x coordinate * @li mean y coordinate * @li mean orientation * @li The remaining columns give the covariance matrix between the above * state variables. * * @section resultsPF Results * * Results are as follows: * * \image html ParticleFilterHarness.png "Results" * \image latex ParticleFilterHarness.eps "Results" */void outputVector(ofstream& out, aux::vector vec);void outputMatrix(ofstream& out, aux::matrix mat);/** * Run tests */int main(int argc, char* argv[]) { boost::mpi::environment env(argc, argv); boost::mpi::communicator world; const int rank = world.rank(); const int size = world.size(); int i; /* set up robot simulator */ MobileRobot robot(0.1, 5e-3); /* initial state */ aux::vector mu(SYSTEM_SIZE); aux::symmetric_matrix sigma(SYSTEM_SIZE); mu.clear(); mu(0) = -1.0; mu(1) = 1.0; mu(2) = 0.8; mu(3) = 0.1; mu(4) = 5e-3; sigma.clear(); sigma(0,0) = 1.0; sigma(1,1) = 1.0; sigma(2,2) = 0.01; sigma(3,3) = 1e-6; sigma(4,4) = 1e-6; aux::GaussianPdf x0_tmp(mu, sigma); aux::DiracMixturePdf x0(SYSTEM_SIZE); for (i = 0; i < NUM_PARTICLES / size; i++) { x0.addComponent(x0_tmp.sample()); } /* system noise */ mu.resize(SYSTEM_NOISE_SIZE, false); sigma.resize(SYSTEM_NOISE_SIZE, false); mu.clear(); sigma.clear(); sigma(0,0) = pow(0.01, 2.0); sigma(1,1) = pow(0.01, 2.0); aux::GaussianPdf w(mu, sigma); /* resampling noise */ sigma(0,0) = pow(0.001, 2.0); sigma(1,1) = pow(0.001, 2.0); aux::GaussianPdf r(mu, sigma); /* measurement noise */ mu.resize(MEAS_NOISE_SIZE, false); sigma.resize(MEAS_NOISE_SIZE, false); mu.clear(); sigma.clear(); sigma(0,0) = pow(0.05,2.0); aux::GaussianPdf v(mu, sigma); /* define model */ MobileRobotParticleFilterModel model(w, v, r); /* create filter */ ParticleFilter<unsigned int> filter(&model, x0); /* create resamplers */ DeterministicParticleResampler resampler(NUM_PARTICLES); /* estimate and output results */ aux::vector meas(MEAS_SIZE); aux::vector actual(ACTUAL_SIZE); aux::DiracMixturePdf pred(SYSTEM_SIZE); unsigned int t = 0; ofstream fmeas("results/ParticleFilterHarness_meas.out"); ofstream factual("results/ParticleFilterHarness_actual.out"); ofstream fpred("results/ParticleFilterHarness_pred.out"); mu.resize(SYSTEM_SIZE); sigma.resize(SYSTEM_SIZE); /* output initial state */ pred = filter.getFilteredState(); actual = robot.getState(); mu = pred.getDistributedExpectation(); sigma = pred.getDistributedCovariance(); if (rank == 0) { cerr << t << ' '; factual << t << '\t'; outputVector(factual, actual); factual << endl; fpred << t << '\t'; outputVector(fpred, mu); fpred << '\t'; outputMatrix(fpred, sigma); fpred << endl; } for (t = 1; t <= STEPS; t++) { if (rank == 0) { robot.move(); meas = robot.measure(); } boost::mpi::broadcast(world, meas, 0); filter.resample(&resampler); filter.filter(t, meas); pred = filter.getFilteredState(); actual = robot.getState(); mu = pred.getDistributedExpectation(); sigma = pred.getDistributedCovariance(); if (rank == 0) { cerr << t << ' '; /* output measurement */ fmeas << t << '\t'; outputVector(fmeas, meas); fmeas << endl; /* output actual state */ factual << t << '\t'; outputVector(factual, actual); factual << endl; /* output filtered state */ fpred << t << '\t'; outputVector(fpred, mu); fpred << '\t'; outputMatrix(fpred, sigma); fpred << endl; } } fmeas.close(); factual.close(); fpred.close(); return 0;}void outputVector(ofstream& out, aux::vector vec) { aux::vector::iterator iter, end; iter = vec.begin(); end = vec.end(); while (iter != end) { out << *iter; iter++; if (iter != end) { out << '\t'; } }}void outputMatrix(ofstream& out, aux::matrix mat) { unsigned int i, j; for (j = 0; j < mat.size2(); j++) { for (i = 0; i < mat.size1(); i++) { out << mat(i,j); if (i != mat.size1() - 1 || j != mat.size2() - 1) { out << '\t'; } } }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -