📄 dijkstra.m
字号:
function [path, totalCost, farthestPreviousHop, farthestNextHop] = dijkstra(n, netCostMatrix, s, d, farthestPreviousHop, farthestNextHop)
% path: the list of nodes in the path from source to destination;
% totalCost: the total cost of the path;
% farthestNode: the farthest node to reach for each node after performing
% the routing;
% n: the number of nodes in the network;
% s: source node index;
% d: destination node index;
clear;
noOfNodes = 50;
rand('state', 0);
figure(1);
clf;
hold on;
L = 1000;
R = 120; % maximum range;
netXloc = rand(1,noOfNodes)*L;
netYloc = rand(1,noOfNodes)*L;
for i = 1:noOfNodes
plot(netXloc(i), netYloc(i), '.');
text(netXloc(i), netYloc(i), num2str(i));
for j = 1:noOfNodes
distance = sqrt((netXloc(i) - netXloc(j))^2 + (netYloc(i) - netYloc(j))^2);
if distance <= R
matrix(i, j) = 1; % there is a link;
line([netXloc(i) netXloc(j)], [netYloc(i) netYloc(j)], 'LineStyle', ':');
else
matrix(i, j) = inf;
end;
end;
end;
activeNodes = [];
for i = 1:noOfNodes,
% initialize the farthest node to be itself;
farthestPreviousHop(i) = i; % used to compute the RTS/CTS range;
farthestNextHop(i) = i;
end;
[path, totalCost, farthestPreviousHop, farthestNextHop] = dijkstra(noOfNodes, matrix, 1, 15, farthestPreviousHop, farthestNextHop);
path
totalCost
if length(path) ~= 0
for i = 1:(length(path)-1)
line([netXloc(path(i)) netXloc(path(i+1))], [netYloc(path(i)) netYloc(path(i+1))], 'Color','r','LineWidth', 0.50, 'LineStyle', '-.');
end;
end;
hold off;
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% all the nodes are un-visited;
visited(1:n) = 0;
distance(1:n) = inf; % it stores the shortest distance between each node and the source node;
parent(1:n) = 0;
distance(s) = 0;
for i = 1:(n-1),
temp = [];
for h = 1:n,
if visited(h) == 0 % in the tree;
temp=[temp distance(h)];
else
temp=[temp inf];
end
end;
[t, u] = min(temp); % it starts from node with the shortest distance to the source;
visited(u) = 1; % mark it as visited;
for v = 1:n, % for each neighbors of node u;
if ( ( netCostMatrix(u, v) + distance(u)) < distance(v) )
distance(v) = distance(u) + netCostMatrix(u, v); % update the shortest distance when a shorter path is found;
parent(v) = u; % update its parent;
end;
end;
end;
path = [];
if parent(d) ~= 0 % if there is a path!
t = d;
path = [d];
while t ~= s
p = parent(t);
path = [p path];
if netCostMatrix(t, farthestPreviousHop(t)) < netCostMatrix(t, p)
farthestPreviousHop(t) = p;
end;
if netCostMatrix(p, farthestNextHop(p)) < netCostMatrix(p, t)
farthestNextHop(p) = t;
end;
t = p;
end;
end;
totalCost = distance(d);
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -