⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dijkstra.m

📁 dijkstra最短路径算法
💻 M
字号:
function [path, totalCost, farthestPreviousHop, farthestNextHop] = dijkstra(n, netCostMatrix, s, d, farthestPreviousHop, farthestNextHop)
% path: the list of nodes in the path from source to destination;
% totalCost: the total cost of the path;
% farthestNode: the farthest node to reach for each node after performing
% the routing;
% n: the number of nodes in the network;
% s: source node index;
% d: destination node index;


clear;
noOfNodes  = 50;
rand('state', 0);
figure(1);
clf;
hold on;
L = 1000;
R = 120; % maximum range;
netXloc = rand(1,noOfNodes)*L;
netYloc = rand(1,noOfNodes)*L;
for i = 1:noOfNodes
    plot(netXloc(i), netYloc(i), '.');
    text(netXloc(i), netYloc(i), num2str(i));
    for j = 1:noOfNodes
        distance = sqrt((netXloc(i) - netXloc(j))^2 + (netYloc(i) - netYloc(j))^2);
        if distance <= R
            matrix(i, j) = 1;   % there is a link;
            line([netXloc(i) netXloc(j)], [netYloc(i) netYloc(j)], 'LineStyle', ':');
        else
            matrix(i, j) = inf;
        end;
    end;
end;


activeNodes = [];
for i = 1:noOfNodes,
    % initialize the farthest node to be itself;
    farthestPreviousHop(i) = i;     % used to compute the RTS/CTS range;
    farthestNextHop(i) = i;
end;

[path, totalCost, farthestPreviousHop, farthestNextHop] = dijkstra(noOfNodes, matrix, 1, 15, farthestPreviousHop, farthestNextHop);
path
totalCost
if length(path) ~= 0
    for i = 1:(length(path)-1)
        line([netXloc(path(i)) netXloc(path(i+1))], [netYloc(path(i)) netYloc(path(i+1))], 'Color','r','LineWidth', 0.50, 'LineStyle', '-.');
    end;
end;
hold off;
return;
    

    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% all the nodes are un-visited;
visited(1:n) = 0;

distance(1:n) = inf;    % it stores the shortest distance between each node and the source node;
parent(1:n) = 0;

distance(s) = 0;
for i = 1:(n-1),
    temp = [];
    for h = 1:n,
         if visited(h) == 0   % in the tree;
             temp=[temp distance(h)];
         else
             temp=[temp inf];
         end
     end;
     [t, u] = min(temp);    % it starts from node with the shortest distance to the source;
     visited(u) = 1;       % mark it as visited;
     for v = 1:n,           % for each neighbors of node u;
         if ( ( netCostMatrix(u, v) + distance(u)) < distance(v) )
             distance(v) = distance(u) + netCostMatrix(u, v);   % update the shortest distance when a shorter path is found;
             parent(v) = u;                                     % update its parent;
         end;             
     end;
end;

path = [];
if parent(d) ~= 0   % if there is a path!
    t = d;
    path = [d];
    while t ~= s
        p = parent(t);
        path = [p path];
        
        if netCostMatrix(t, farthestPreviousHop(t)) < netCostMatrix(t, p)
            farthestPreviousHop(t) = p;
        end;
        if netCostMatrix(p, farthestNextHop(p)) < netCostMatrix(p, t)
            farthestNextHop(p) = t;
        end;

        t = p;      
    end;
end;

totalCost = distance(d);

return;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -