⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 isodata.cpp

📁 C++实现isodata聚类算法
💻 CPP
字号:
// ISODATA.cpp : Defines the entry point for the console application.
//
#include <fstream.h>
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include "math.h"
#define  N 150
#define  eps   0.00001

struct Pointf
{
	int sequence;
	float x1;
	float x2;
	float x3;
	float x4;
};

struct PointZ
{
	float x1;
	float x2;
	float x3;
	float x4;
};

float CalDistancef(Pointf x1,Pointf x2)
{
	return sqrtf((x1.x1-x2.x1)*(x1.x1-x2.x1)+(x1.x2-x2.x2)*(x1.x2-x2.x2)+(x1.x3-x2.x3)*(x1.x3-x2.x3)+(x1.x4-x2.x4)*(x1.x4-x2.x4));
}

float CalDistanceZ(PointZ x1,PointZ x2)
{
	return sqrtf((x1.x1-x2.x1)*(x1.x1-x2.x1)+(x1.x2-x2.x2)*(x1.x2-x2.x2)+(x1.x3-x2.x3)*(x1.x3-x2.x3)+(x1.x4-x2.x4)*(x1.x4-x2.x4));
}

float CalDistancefZ(Pointf x1,PointZ x2)
{
	return sqrtf((x1.x1-x2.x1)*(x1.x1-x2.x1)+(x1.x2-x2.x2)*(x1.x2-x2.x2)+(x1.x3-x2.x3)*(x1.x3-x2.x3)+(x1.x4-x2.x4)*(x1.x4-x2.x4));
}




int main(int argc, char* argv[])
{
	Pointf pts[N];
	int i = 0;
	int j,m;
	ifstream inFile("iris.txt");
	if(!inFile)
	{
		cout<<"请把iris.txt放到程序所在目录";
	
		exit(1);
	}
	while(!inFile.eof())	
	{
		
//		inFile_dict.getline(w,sizeof(w),'.');
		inFile>>pts[i].sequence;
		inFile>>pts[i].x1;
		inFile>>pts[i].x2;
		inFile>>pts[i].x3;
		inFile>>pts[i].x4;


		i++;
	}
	inFile.close();
	printf("样本集为:\n");
	
	for(i=0;i<N;i++)
	{
		printf("X%d(%.1f,%.1f,%.1f,%.1f)  ",pts[i].sequence,pts[i].x1,pts[i].x2,pts[i].x3,pts[i].x4);
		
		if((i+1)%3==0)
		{
			printf("\n");
		}
		
	}
	printf("\n");
	printf("\n");
	
	int Nc=0;
	printf("please input Nc(0-150): ");
	scanf("%d",&Nc);

	int Z[N];

	for(i=0;i<Nc;i++)
	{
		printf("输入初始第%d聚类中心的序号(0-149):",i);
		scanf("%d",&Z[i]);
	}
	
    int    Nj[N]; //记录每个类中元素的个数
	PointZ ZArray[N];
	Pointf SAArray[N][N];
	float  DjAv[N];
	float  Deltaj[N][2];
	float  Deltajmax[N];
	int  DeltajmaxCor[N];
	float  DAv;
	int    Nreal=N;
	int    count=0;

	float  Dij[N*N/2];
	int    Diji[N];
	int    Dijj[N];
	int    q=0;
	int    p=0;
    float ft;
	int   it;
	int   jt;
	int   flag;
	int ss=0;
	PointZ Ztp;
	PointZ ZArraytp[N];
	int    Nctp;

	char ch;
	
	int cur=0;

	for(i=0;i<N;i++)
	{
		Nj[i]=0; 
	}

	//聚类中心的特征值
	for(i=0;i<Nc;i++)
	{
	//	int ihere=Z[i];
		int ihere=i;
		ZArray[i].x1=pts[ihere].x1;
		ZArray[i].x2=pts[ihere].x2;
		ZArray[i].x3=pts[ihere].x3;
		ZArray[i].x4=pts[ihere].x4;

	}

	int K,ThetaN;
	float ThetaS,ThetaC;
	int L,I;

Step1:
	printf("输入预期聚类中心数目 K :");
	scanf("%d",&K);
	printf("输入每个聚类域中最少的样本数ThetaN: ");
	scanf("%d",&ThetaN);

	

	printf("输入同一聚类域中样本标准差的最大值: ");
	scanf("%f",&ThetaS);

	printf("输入不同聚类域距离最小值: ");
	scanf("%f",&ThetaC);

	printf("输入一次可以合并的聚类中心的最多对数: ");
	scanf("%d",&L);

	printf("输入最大迭代次数: ");
	scanf("%d",&I);
Step2:
	for(i=0;i<Nc;i++)
	{
		Nj[i]=0;
	}

		printf("\n");
		printf("这是第%d次归类\n",count+1);
		
	for(i=0;i<N;i++)                          //将模式样本归类
	{
		if(pts[i].sequence==-1)continue;      //若该点的序号为-1则说明它是被剔除的
		float dis=1.0e+10;
		int xx=0;
		float ftemp;

		for(j=0;j<Nc;j++)                     
		{
			ftemp=CalDistancefZ(pts[i],ZArray[j]);
			if(ftemp<dis||fabs(dis-ftemp)<eps)
			{
				xx=j;
				dis=ftemp;
			}
		}
				
		SAArray[xx][Nj[xx]].x1=pts[i].x1;
		SAArray[xx][Nj[xx]].x2=pts[i].x2;
		SAArray[xx][Nj[xx]].x3=pts[i].x4;
		SAArray[xx][Nj[xx]].x3=pts[i].x4;

		SAArray[xx][Nj[xx]].sequence=pts[i].sequence;	
		Nj[xx]=Nj[xx]+1;	
	}

	   for(i=0;i<Nc;i++)
	   {
		   printf("第%d个聚类中心是:(%.2f,%.2f,%.2f,%.2f)   ",i,ZArray[i].x1,ZArray[i].x2,ZArray[i].x3,ZArray[i].x4);
		   printf("包含的元素有:",i);
		   for(j=0;j<Nj[i];j++)
		   {
			   printf(" X%d ",SAArray[i][j].sequence);
		   }
		   printf("\n");
		  // printf("Nj(%d) is %d\n",i,Nj[i]);
	   }

	count++;

Step3:

	for(j=0;j<Nc;j++)               //是否可以去掉一些数据
	{
		if(Nj[j]<ThetaN)
		{
			for(i=0;i<Nj[j];i++)
			{
				pts[SAArray[j][i].sequence].sequence=-1;
			}
			i=j;
			int tr=j;
			Nreal-=Nj[j];
			while(j<Nc-1)
			{
				
				for(m=0;m<Nj[j+1];m++)
				{
					SAArray[j][m].x1=SAArray[j+1][m].x1;
					SAArray[j][m].x2=SAArray[j+1][m].x2;
					SAArray[j][m].x3=SAArray[j+1][m].x3;
					SAArray[j][m].x4=SAArray[j+1][m].x4;

					SAArray[j][m].sequence=SAArray[j+1][m].sequence;
				} 
				j++;			
			}

			while(i<Nc-1)
			{
				Nj[i]=Nj[i+1];
				i++;
			}
			Nc--;
			j=tr;
		}		
	}

Step4:              //修正各聚类中心
	for(j=0;j<Nc;j++)
	{
		float temx=0,temy=0;
		for(i=0;i<Nj[j];i++)
		{
			temx+=SAArray[j][i].x1;
			temy+=SAArray[j][i].x2;	
			temx+=SAArray[j][i].x3;
			temx+=SAArray[j][i].x4;

		}
		ZArray[j].x1=temx/Nj[j];
		ZArray[j].x2=temy/Nj[j];
		ZArray[j].x3=temx/Nj[j];
		ZArray[j].x4=temx/Nj[j];
	}

Step5://计算各聚类域中诸样本与聚类中心的平均距离
	float temp=0.0;
	for(j=0;j<Nc;j++)
	{
		for(i=0;i<Nj[j];i++)
		{
			temp+=CalDistancefZ(SAArray[j][i],ZArray[j]);
		}

		DjAv[j]=temp/Nj[j];
		
		temp=0.0;
	}
Step6://计算全部模式样本对应聚类中心的总平均距离
	DAv=0;
	for(j=0;j<Nc;j++)
	{
		DAv+=Nj[j]*DjAv[j];
	}
	DAv/=Nreal;

Step7:

	if(count>=I) goto Step14;

	if(Nc<=K/2)goto Step8;

	if((count%2==0)||Nc>=2*K) goto Step11;
Step8://计算各聚类中样本距离标准差
	
	for(j=0;j<Nc;j++)
	{
		float temx=0.0,temy=0.0;
		for(i=0;i<Nj[j];i++)
		{
           temx+=(SAArray[j][i].x1-ZArray[j].x1)*(SAArray[j][i].x1-ZArray[j].x1);
		   temy+=(SAArray[j][i].x2-ZArray[j].x2)*(SAArray[j][i].x2-ZArray[j].x2);
           temx+=(SAArray[j][i].x3-ZArray[j].x3)*(SAArray[j][i].x3-ZArray[j].x3);
           temx+=(SAArray[j][i].x4-ZArray[j].x4)*(SAArray[j][i].x4-ZArray[j].x4);
		}
        Deltaj[j][0]=sqrtf(temx/Nj[j]);
		Deltaj[j][1]=sqrtf(temy/Nj[j]);	
		temx=0.0,temy=0.0;	
	}	
Step9://求每个标准差向量中的最大分量 
	for(j=0;j<Nc;j++)
	{
		Deltajmax[j]=Deltaj[j][0]>Deltaj[j][1]?Deltaj[j][0]:Deltaj[j][1];
		DeltajmaxCor[j]=Deltaj[j][0]>Deltaj[j][1]?0:1;
	}
Step10://分裂判断和计算
	for(j=0;j<Nc;j++)
	{
		if(Deltajmax[j]>ThetaS)
		{
			if((DjAv[j]>DAv&&Nj[j]>2*(ThetaN+1))||Nc<=K/2)
			{
				float Garma=0.5;
				PointZ Zj1,Zj2;

				if(DeltajmaxCor[j]==0)
				{
					Zj1.x1=ZArray[j].x1+Deltajmax[j]*Garma;
					Zj1.x2=ZArray[j].x2;
					Zj1.x3=ZArray[j].x3;
					Zj1.x4=ZArray[j].x4;
					

					Zj2.x1=ZArray[j].x1-Deltajmax[j]*Garma;
					Zj2.x2=ZArray[j].x2;
					Zj2.x3=ZArray[j].x3;
					Zj2.x4=ZArray[j].x4;

				}
				else if(DeltajmaxCor[j]==1)
				{
					Zj1.x1=ZArray[j].x1;
					Zj1.x2=ZArray[j].x2+Deltajmax[j]*Garma;
					Zj1.x3=ZArray[j].x3;
					Zj1.x4=ZArray[j].x4;

					Zj2.x1=ZArray[j].x1;
					Zj2.x2=ZArray[j].x2-Deltajmax[j]*Garma;
					Zj2.x3=ZArray[j].x3;
					Zj2.x4=ZArray[j].x4;
				}
				else if(DeltajmaxCor[j]==2)
				{
					Zj1.x1=ZArray[j].x1;
					Zj1.x2=ZArray[j].x2;
					Zj1.x3=ZArray[j].x3+Deltajmax[j]*Garma;
					Zj1.x4=ZArray[j].x4;

					Zj2.x1=ZArray[j].x1;
					Zj2.x2=ZArray[j].x2;
					Zj2.x3=ZArray[j].x3-Deltajmax[j]*Garma;
					Zj2.x4=ZArray[j].x4;
				}

				else if(DeltajmaxCor[j]==3)
				{
					Zj1.x1=ZArray[j].x1;
					Zj1.x2=ZArray[j].x2;
					Zj1.x3=ZArray[j].x3;
					Zj1.x4=ZArray[j].x4+Deltajmax[j]*Garma;

					Zj2.x1=ZArray[j].x1;
					Zj2.x2=ZArray[j].x2;
					Zj2.x3=ZArray[j].x3;
					Zj2.x4=ZArray[j].x4-Deltajmax[j]*Garma;
				}
	
					
                ZArray[j].x1=Zj1.x1;
				ZArray[j].x2=Zj1.x2;
				ZArray[j].x3=Zj1.x3;
				ZArray[j].x4=Zj1.x4;


				ZArray[Nc].x1=Zj2.x1;
				ZArray[Nc].x2=Zj2.x2;
				ZArray[Nc].x3=Zj2.x3;
				ZArray[Nc].x4=Zj2.x4;
				Nc++;
				goto Step2;
			}
		}
	}

Step11://计算全部聚类中心的距离
	ss=0;
	for(i=0;i<Nc-1;i++)
	{
		for(j=i+1;j<Nc;j++)
		{
			Dij[ss]=CalDistanceZ(ZArray[i],ZArray[j]);
			Diji[ss]=i;
			Dijj[ss]=j;
			ss++;		
		}
	}
		
Step12: //简单起见,只考虑一次只合并一对聚类中心的情况
	    //找出类间距离最小的
	ft=Dij[0];
	it=Diji[0];
	jt=Dijj[0];
	for(i=1;i<ss;i++)
	{
		if(Dij[i]<ft)
		{
			ft=Dij[i];
			it=Diji[i];
			jt=Dijj[i];
		}
	}
Step13:
	if(ft<ThetaC)
	{
		Ztp.x1=(Nj[it]*ZArray[it].x1+Nj[jt]*ZArray[jt].x1)/(Nj[it]+Nj[jt]);
		Ztp.x2=(Nj[it]*ZArray[it].x2+Nj[jt]*ZArray[jt].x2)/(Nj[it]+Nj[jt]);
		Ztp.x3=(Nj[it]*ZArray[it].x3+Nj[jt]*ZArray[jt].x3)/(Nj[it]+Nj[jt]);
		Ztp.x4=(Nj[it]*ZArray[it].x4+Nj[jt]*ZArray[jt].x4)/(Nj[it]+Nj[jt]);
		ZArray[it].x1=Ztp.x1;
		ZArray[jt].x2=Ztp.x2;
		ZArray[it].x3=Ztp.x3;
		ZArray[it].x4=Ztp.x4;

		j=jt;
		while(j<Nc-1)
		{
			ZArray[j].x1=ZArray[j+1].x1;
			ZArray[j].x2=ZArray[j+1].x2;
			ZArray[j].x3=ZArray[j+1].x3;
			ZArray[j].x4=ZArray[j+1].x4;
			j++;
		}
		j=jt;
		
		while(j<Nc-1)
		{
			Nj[j]=Nj[j+1];
			j++;
		}
		Nc--;
	}
Step14:
	if(count>=I) 
	{
		count=0;	
		printf("\n");
		printf("共分为%d类\n",Nc);
			return 0;
		
	}
	else
	{
		goto Step2;	
	}

}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -