📄 aci3_4.c
字号:
park1.Angle = rg1.Out;
park1.calc(&park1);
// ------------------------------------------------------------------------------
// Connect inputs of the PID module and call the PID IQ controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_iq.Ref = _IQ(IqRef);
pid1_iq.Fdb = park1.Qs;
pid1_iq.calc(&pid1_iq);
// ------------------------------------------------------------------------------
// Connect inputs of the PID module and call the PID ID controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_id.Ref = _IQ(IdRef);
pid1_id.Fdb = park1.Ds;
pid1_id.calc(&pid1_id);
// ------------------------------------------------------------------------------
// Connect inputs of the INV_PARK module and call the inverse park transformation
// calculation function.
// ------------------------------------------------------------------------------
ipark1.Ds = pid1_id.Out;
ipark1.Qs = pid1_iq.Out;
ipark1.Angle = rg1.Out;
ipark1.calc(&ipark1);
// ------------------------------------------------------------------------------
// Connect inputs of the ACI module and call the induction motor model
// calculation function.
// ------------------------------------------------------------------------------
aci1.Ualpha = ipark1.Alpha;
aci1.Ubeta = ipark1.Beta;
aci1.calc(&aci1);
// ------------------------------------------------------------------------------
// Connect inputs of the ACI_FE module and call the flux estimation
// calculation function.
// ------------------------------------------------------------------------------
fe1.UDsS = aci1.Ualpha;
fe1.UQsS = aci1.Ubeta;
fe1.IDsS = aci1.Ialpha;
fe1.IQsS = aci1.Ibeta;
fe1.calc(&fe1);
// ------------------------------------------------------------------------------
// Connect inputs of the ACI_SE module and call the speed estimation
// calculation function.
// ------------------------------------------------------------------------------
se1.IDsS = aci1.Ialpha;
se1.IQsS = aci1.Ibeta;
se1.PsiDrS = fe1.PsiDrS;
se1.PsiQrS = fe1.PsiQrS;
se1.ThetaFlux = rg1.Out;
se1.calc(&se1);
// ------------------------------------------------------------------------------
// Connect inputs of the PWMDAC module
// ------------------------------------------------------------------------------
PwmDacCh1 = (int16)_IQtoIQ15(aci1.Ialpha);
PwmDacCh2 = (int16)_IQtoIQ15(fe1.ThetaFlux);
PwmDacCh3 = (int16)_IQtoIQ15(aci1.Torque);
// ------------------------------------------------------------------------------
// Connect inputs of the DATALOG module
// ------------------------------------------------------------------------------
DlogCh1 = (int16)_IQtoIQ15(aci1.Ialpha);
DlogCh2 = (int16)_IQtoIQ15(aci1.Wr);
DlogCh3 = (int16)_IQtoIQ15(fe1.ThetaFlux);
DlogCh4 = (int16)_IQtoIQ15(rg1.Out);
#endif // (BUILDLEVEL==LEVEL4)
// ***************** LEVEL5 *****************
#if (BUILDLEVEL==LEVEL5)
// ------------------------------------------------------------------------------
// Connect inputs of the PARK module and call the park transformation
// calculation function.
// ------------------------------------------------------------------------------
park1.Alpha = aci1.Ialpha;
park1.Beta = aci1.Ibeta;
park1.Angle = fe1.ThetaFlux;
park1.calc(&park1);
// ------------------------------------------------------------------------------
// Connect inputs of the PID module and call the PID speed controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_spd.Ref = _IQ(SpeedRef);
pid1_spd.Fdb = aci1.Wr;
pid1_spd.calc(&pid1_spd);
// ------------------------------------------------------------------------------
// Connect inputs of the PID module and call the PID IQ controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_iq.Ref = pid1_spd.Out;
pid1_iq.Fdb = park1.Qs;
pid1_iq.calc(&pid1_iq);
// ------------------------------------------------------------------------------
// Connect inputs of the PID module and call the PID ID controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_id.Ref = _IQ(IdRef);
pid1_id.Fdb = park1.Ds;
pid1_id.calc(&pid1_id);
// ------------------------------------------------------------------------------
// Connect inputs of the INV_PARK module and call the inverse park transformation
// calculation function.
// ------------------------------------------------------------------------------
ipark1.Ds = pid1_id.Out;
ipark1.Qs = pid1_iq.Out;
ipark1.Angle = fe1.ThetaFlux;
ipark1.calc(&ipark1);
// ------------------------------------------------------------------------------
// Connect inputs of the ACI module and call the induction motor model
// calculation function.
// ------------------------------------------------------------------------------
aci1.Ualpha = ipark1.Alpha;
aci1.Ubeta = ipark1.Beta;
aci1.calc(&aci1);
// ------------------------------------------------------------------------------
// Connect inputs of the ACI_FE module and call the flux estimation
// calculation function.
// ------------------------------------------------------------------------------
fe1.UDsS = aci1.Ualpha;
fe1.UQsS = aci1.Ubeta;
fe1.IDsS = aci1.Ialpha;
fe1.IQsS = aci1.Ibeta;
fe1.calc(&fe1);
// ------------------------------------------------------------------------------
// Connect inputs of the PWMDAC module
// ------------------------------------------------------------------------------
PwmDacCh1 = (int16)_IQtoIQ15(aci1.Ialpha);
PwmDacCh2 = (int16)_IQtoIQ15(fe1.ThetaFlux);
PwmDacCh3 = (int16)_IQtoIQ15(aci1.Torque);
// ------------------------------------------------------------------------------
// Connect inputs of the DATALOG module
// ------------------------------------------------------------------------------
DlogCh1 = (int16)_IQtoIQ15(aci1.Ialpha);
DlogCh2 = (int16)_IQtoIQ15(fe1.ThetaFlux);
DlogCh3 = (int16)_IQtoIQ15(pid1_spd.Ref);
DlogCh4 = (int16)_IQtoIQ15(pid1_spd.Fdb);
#endif // (BUILDLEVEL==LEVEL5)
// ***************** LEVEL6 *****************
#if (BUILDLEVEL==LEVEL6)
// ------------------------------------------------------------------------------
// Connect inputs of the PARK module and call the park transformation
// calculation function.
// ------------------------------------------------------------------------------
park1.Alpha = aci1.Ialpha;
park1.Beta = aci1.Ibeta;
park1.Angle = fe1.ThetaFlux;
park1.calc(&park1);
// ------------------------------------------------------------------------------
// Connect inputs of the PID module and call the PID speed controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_spd.Ref = _IQ(SpeedRef);
pid1_spd.Fdb = se1.WrHat;
pid1_spd.calc(&pid1_spd);
// ------------------------------------------------------------------------------
// Connect inputs of the PID module and call the PID IQ controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_iq.Ref = pid1_spd.Out;
pid1_iq.Fdb = park1.Qs;
pid1_iq.calc(&pid1_iq);
// ------------------------------------------------------------------------------
// Connect inputs of the PID module and call the PID ID controller
// calculation function.
// ------------------------------------------------------------------------------
pid1_id.Ref = _IQ(IdRef);
pid1_id.Fdb = park1.Ds;
pid1_id.calc(&pid1_id);
// ------------------------------------------------------------------------------
// Connect inputs of the INV_PARK module and call the inverse park transformation
// calculation function.
// ------------------------------------------------------------------------------
ipark1.Ds = pid1_id.Out;
ipark1.Qs = pid1_iq.Out;
ipark1.Angle = fe1.ThetaFlux;
ipark1.calc(&ipark1);
// ------------------------------------------------------------------------------
// Connect inputs of the ACI module and call the induction motor model
// calculation function.
// ------------------------------------------------------------------------------
aci1.Ualpha = ipark1.Alpha;
aci1.Ubeta = ipark1.Beta;
aci1.calc(&aci1);
// ------------------------------------------------------------------------------
// Connect inputs of the ACI_FE module and call the flux estimation
// calculation function.
// ------------------------------------------------------------------------------
fe1.UDsS = aci1.Ualpha;
fe1.UQsS = aci1.Ubeta;
fe1.IDsS = aci1.Ialpha;
fe1.IQsS = aci1.Ibeta;
fe1.calc(&fe1);
// ------------------------------------------------------------------------------
// Connect inputs of the ACI_SE module and call the speed estimation
// calculation function.
// ------------------------------------------------------------------------------
se1.IDsS = aci1.Ialpha;
se1.IQsS = aci1.Ibeta;
se1.PsiDrS = fe1.PsiDrS;
se1.PsiQrS = fe1.PsiQrS;
se1.ThetaFlux = fe1.ThetaFlux;
se1.calc(&se1);
// ------------------------------------------------------------------------------
// Connect inputs of the PWMDAC module
// ------------------------------------------------------------------------------
PwmDacCh1 = (int16)_IQtoIQ15(aci1.Ialpha);
PwmDacCh2 = (int16)_IQtoIQ15(fe1.ThetaFlux);
PwmDacCh3 = (int16)_IQtoIQ15(aci1.Torque);
// ------------------------------------------------------------------------------
// Connect inputs of the DATALOG module
// ------------------------------------------------------------------------------
DlogCh1 = (int16)_IQtoIQ15(aci1.Ialpha);
DlogCh2 = (int16)_IQtoIQ15(fe1.ThetaFlux);
DlogCh3 = (int16)_IQtoIQ15(pid1_spd.Ref);
DlogCh4 = (int16)_IQtoIQ15(pid1_spd.Fdb);
#endif // (BUILDLEVEL==LEVEL6)
// ------------------------------------------------------------------------------
// Call the PWMDAC update function.
// ------------------------------------------------------------------------------
pwmdac1.update(&pwmdac1);
// ------------------------------------------------------------------------------
// Call the DATALOG update function.
// ------------------------------------------------------------------------------
dlog.update(&dlog);
#if (DSP_TARGET==F2808)
// Enable more interrupts from this timer
EPwm1Regs.ETCLR.bit.INT = 1;
// Acknowledge interrupt to recieve more interrupts from PIE group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
#endif
#if (DSP_TARGET==F2812)
// Enable more interrupts from this timer
EvaRegs.EVAIMRA.bit.T1UFINT = 1;
// Note: To be safe, use a mask value to write to the entire
// EVAIFRA register. Writing to one bit will cause a read-modify-write
// operation that may have the result of writing 1's to clear
// bits other then those intended.
EvaRegs.EVAIFRA.all = BIT9;
// Acknowledge interrupt to recieve more interrupts from PIE group 2
PieCtrlRegs.PIEACK.all = PIEACK_GROUP2;
#endif
}
//===========================================================================
// No more.
//===========================================================================
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -