📄 bcm43xx_phy.c
字号:
struct bcm43xx_lopair * bcm43xx_current_lopair(struct bcm43xx_private *bcm){ return bcm43xx_find_lopair(bcm, bcm->current_core->radio->txpower[0], bcm->current_core->radio->txpower[1], bcm->current_core->radio->txpower[2]);}/* Adjust B/G LO */void bcm43xx_phy_lo_adjust(struct bcm43xx_private *bcm, int fixed){ struct bcm43xx_lopair *pair; if (fixed) { /* Use fixed values. Only for initialization. */ pair = bcm43xx_find_lopair(bcm, 2, 3, 0); } else pair = bcm43xx_current_lopair(bcm); bcm43xx_lo_write(bcm, pair);}static inlinevoid bcm43xx_phy_lo_g_measure_txctl2(struct bcm43xx_private *bcm){ u16 txctl2 = 0, i; u32 smallest, tmp; bcm43xx_radio_write16(bcm, 0x0052, 0x0000); udelay(10); smallest = bcm43xx_phy_lo_g_singledeviation(bcm, 0); for (i = 0; i < 16; i++) { bcm43xx_radio_write16(bcm, 0x0052, i); udelay(10); tmp = bcm43xx_phy_lo_g_singledeviation(bcm, 0); if (tmp < smallest) { smallest = tmp; txctl2 = i; } } bcm->current_core->radio->txpower[3] = txctl2;}staticvoid bcm43xx_phy_lo_g_state(struct bcm43xx_private *bcm, const struct bcm43xx_lopair *in_pair, struct bcm43xx_lopair *out_pair, u16 r27){ static const struct bcm43xx_lopair transitions[8] = { { .high = 1, .low = 1, }, { .high = 1, .low = 0, }, { .high = 1, .low = -1, }, { .high = 0, .low = -1, }, { .high = -1, .low = -1, }, { .high = -1, .low = 0, }, { .high = -1, .low = 1, }, { .high = 0, .low = 1, }, }; struct bcm43xx_lopair lowest_transition = { .high = in_pair->high, .low = in_pair->low, }; struct bcm43xx_lopair tmp_pair; struct bcm43xx_lopair transition; int i = 12; int state = 0; int found_lower; int j, begin, end; u32 lowest_deviation; u32 tmp; /* Note that in_pair and out_pair can point to the same pair. Be careful. */ bcm43xx_lo_write(bcm, &lowest_transition); lowest_deviation = bcm43xx_phy_lo_g_singledeviation(bcm, r27); do { found_lower = 0; assert(state >= 0 && state <= 8); if (state == 0) { begin = 1; end = 8; } else if (state % 2 == 0) { begin = state - 1; end = state + 1; } else { begin = state - 2; end = state + 2; } if (begin < 1) begin += 8; if (end > 8) end -= 8; j = begin; tmp_pair.high = lowest_transition.high; tmp_pair.low = lowest_transition.low; while (1) { assert(j >= 1 && j <= 8); transition.high = tmp_pair.high + transitions[j - 1].high; transition.low = tmp_pair.low + transitions[j - 1].low; if ((abs(transition.low) < 9) && (abs(transition.high) < 9)) { bcm43xx_lo_write(bcm, &transition); tmp = bcm43xx_phy_lo_g_singledeviation(bcm, r27); if (tmp < lowest_deviation) { lowest_deviation = tmp; state = j; found_lower = 1; lowest_transition.high = transition.high; lowest_transition.low = transition.low; } } if (j == end) break; if (j == 8) j = 1; else j++; } } while (i-- && found_lower); out_pair->high = lowest_transition.high; out_pair->low = lowest_transition.low;}/* Set the baseband attenuation value on chip. */void bcm43xx_phy_set_baseband_attenuation(struct bcm43xx_private *bcm, u16 baseband_attenuation){ u16 value; if (bcm->current_core->phy->version == 0) { value = (bcm43xx_read16(bcm, 0x03E6) & 0xFFF0); value |= (baseband_attenuation & 0x000F); bcm43xx_write16(bcm, 0x03E6, value); return; } if (bcm->current_core->phy->version > 1) { value = bcm43xx_phy_read(bcm, 0x0060) & ~0x003C; value |= (baseband_attenuation << 2) & 0x003C; } else { value = bcm43xx_phy_read(bcm, 0x0060) & ~0x0078; value |= (baseband_attenuation << 3) & 0x0078; } bcm43xx_phy_write(bcm, 0x0060, value);}/* http://bcm-specs.sipsolutions.net/LocalOscillator/Measure */void bcm43xx_phy_lo_g_measure(struct bcm43xx_private *bcm){ static const u8 pairorder[10] = { 3, 1, 5, 7, 9, 2, 0, 4, 6, 8 }; const int is_initializing = bcm43xx_is_initializing(bcm); struct bcm43xx_phyinfo *phy = bcm->current_core->phy; struct bcm43xx_radioinfo *radio = bcm->current_core->radio; u16 h, i, oldi = 0, j; struct bcm43xx_lopair control; struct bcm43xx_lopair *tmp_control; u16 tmp; u16 regstack[16] = { 0 }; u8 oldchannel; //XXX: What are these? u8 r27 = 0, r31; oldchannel = radio->channel; /* Setup */ if (phy->connected) { regstack[0] = bcm43xx_phy_read(bcm, BCM43xx_PHY_G_CRS); regstack[1] = bcm43xx_phy_read(bcm, 0x0802); bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0] & 0x7FFF); bcm43xx_phy_write(bcm, 0x0802, regstack[1] & 0xFFFC); } regstack[3] = bcm43xx_read16(bcm, 0x03E2); bcm43xx_write16(bcm, 0x03E2, regstack[3] | 0x8000); regstack[4] = bcm43xx_read16(bcm, BCM43xx_MMIO_CHANNEL_EXT); regstack[5] = bcm43xx_phy_read(bcm, 0x15); regstack[6] = bcm43xx_phy_read(bcm, 0x2A); regstack[7] = bcm43xx_phy_read(bcm, 0x35); regstack[8] = bcm43xx_phy_read(bcm, 0x60); regstack[9] = bcm43xx_radio_read16(bcm, 0x43); regstack[10] = bcm43xx_radio_read16(bcm, 0x7A); regstack[11] = bcm43xx_radio_read16(bcm, 0x52); if (phy->connected) { regstack[12] = bcm43xx_phy_read(bcm, 0x0811); regstack[13] = bcm43xx_phy_read(bcm, 0x0812); regstack[14] = bcm43xx_phy_read(bcm, 0x0814); regstack[15] = bcm43xx_phy_read(bcm, 0x0815); } bcm43xx_radio_selectchannel(bcm, 6, 0); if (phy->connected) { bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0] & 0x7FFF); bcm43xx_phy_write(bcm, 0x0802, regstack[1] & 0xFFFC); bcm43xx_dummy_transmission(bcm); } bcm43xx_radio_write16(bcm, 0x0043, 0x0006); bcm43xx_phy_set_baseband_attenuation(bcm, 2); bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, 0x0000); bcm43xx_phy_write(bcm, 0x002E, 0x007F); bcm43xx_phy_write(bcm, 0x080F, 0x0078); bcm43xx_phy_write(bcm, 0x0035, regstack[7] & ~(1 << 7)); bcm43xx_radio_write16(bcm, 0x007A, regstack[10] & 0xFFF0); bcm43xx_phy_write(bcm, 0x002B, 0x0203); bcm43xx_phy_write(bcm, 0x002A, 0x08A3); if (phy->connected) { bcm43xx_phy_write(bcm, 0x0814, regstack[14] | 0x0003); bcm43xx_phy_write(bcm, 0x0815, regstack[15] & 0xFFFC); bcm43xx_phy_write(bcm, 0x0811, 0x01B3); bcm43xx_phy_write(bcm, 0x0812, 0x00B2); } if (is_initializing) bcm43xx_phy_lo_g_measure_txctl2(bcm); bcm43xx_phy_write(bcm, 0x080F, 0x8078); /* Measure */ control.low = 0; control.high = 0; for (h = 0; h < 10; h++) { /* Loop over each possible RadioAttenuation (0-9) */ i = pairorder[h]; if (is_initializing) { if (i == 3) { control.low = 0; control.high = 0; } else if (((i % 2 == 1) && (oldi % 2 == 1)) || ((i % 2 == 0) && (oldi % 2 == 0))) { tmp_control = bcm43xx_get_lopair(phy, oldi, 0); memcpy(&control, tmp_control, sizeof(control)); } else { tmp_control = bcm43xx_get_lopair(phy, 3, 0); memcpy(&control, tmp_control, sizeof(control)); } } /* Loop over each possible BasebandAttenuation/2 */ for (j = 0; j < 4; j++) { if (is_initializing) { tmp = i * 2 + j; r27 = 0; r31 = 0; if (tmp > 14) { r31 = 1; if (tmp > 17) r27 = 1; if (tmp > 19) r27 = 2; } } else { tmp_control = bcm43xx_get_lopair(phy, i, j * 2); if (!tmp_control->used) continue; memcpy(&control, tmp_control, sizeof(control)); r27 = 3; r31 = 0; } bcm43xx_radio_write16(bcm, 0x43, i); bcm43xx_radio_write16(bcm, 0x52, radio->txpower[3]); udelay(10); bcm43xx_phy_set_baseband_attenuation(bcm, j * 2); tmp = (regstack[10] & 0xFFF0); if (r31) tmp |= 0x0008; bcm43xx_radio_write16(bcm, 0x007A, tmp); tmp_control = bcm43xx_get_lopair(phy, i, j * 2); bcm43xx_phy_lo_g_state(bcm, &control, tmp_control, r27); } oldi = i; } /* Loop over each possible RadioAttenuation (10-13) */ for (i = 10; i < 14; i++) { /* Loop over each possible BasebandAttenuation/2 */ for (j = 0; j < 4; j++) { if (is_initializing) { tmp_control = bcm43xx_get_lopair(phy, i - 9, j * 2); memcpy(&control, tmp_control, sizeof(control)); tmp = (i - 9) * 2 + j - 5;//FIXME: This is wrong, as the following if statement can never trigger. r27 = 0; r31 = 0; if (tmp > 14) { r31 = 1; if (tmp > 17) r27 = 1; if (tmp > 19) r27 = 2; } } else { tmp_control = bcm43xx_get_lopair(phy, i - 9, j * 2); if (!tmp_control->used) continue; memcpy(&control, tmp_control, sizeof(control)); r27 = 3; r31 = 0; } bcm43xx_radio_write16(bcm, 0x43, i - 9); bcm43xx_radio_write16(bcm, 0x52, radio->txpower[3] | (3/*txctl1*/ << 4));//FIXME: shouldn't txctl1 be zero here and 3 in the loop above? udelay(10); bcm43xx_phy_set_baseband_attenuation(bcm, j * 2); tmp = (regstack[10] & 0xFFF0); if (r31) tmp |= 0x0008; bcm43xx_radio_write16(bcm, 0x7A, tmp); tmp_control = bcm43xx_get_lopair(phy, i, j * 2); bcm43xx_phy_lo_g_state(bcm, &control, tmp_control, r27); } } /* Restoration */ if (phy->connected) { bcm43xx_phy_write(bcm, 0x0015, 0xE300); bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA0); udelay(5); bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA2); udelay(2); bcm43xx_phy_write(bcm, 0x0812, (r27 << 8) | 0xA3); } else bcm43xx_phy_write(bcm, 0x0015, r27 | 0xEFA0); bcm43xx_phy_lo_adjust(bcm, is_initializing); bcm43xx_phy_write(bcm, 0x002E, 0x807F); if (phy->connected) bcm43xx_phy_write(bcm, 0x002F, 0x0202); else bcm43xx_phy_write(bcm, 0x002F, 0x0101); bcm43xx_write16(bcm, BCM43xx_MMIO_CHANNEL_EXT, regstack[4]); bcm43xx_phy_write(bcm, 0x0015, regstack[5]); bcm43xx_phy_write(bcm, 0x002A, regstack[6]); bcm43xx_phy_write(bcm, 0x0035, regstack[7]); bcm43xx_phy_write(bcm, 0x0060, regstack[8]); bcm43xx_radio_write16(bcm, 0x0043, regstack[9]); bcm43xx_radio_write16(bcm, 0x007A, regstack[10]); regstack[11] &= 0x00F0; regstack[11] |= (bcm43xx_radio_read16(bcm, 0x52) & 0x000F); bcm43xx_radio_write16(bcm, 0x52, regstack[11]); bcm43xx_write16(bcm, 0x03E2, regstack[3]); if (phy->connected) { bcm43xx_phy_write(bcm, 0x0811, regstack[12]); bcm43xx_phy_write(bcm, 0x0812, regstack[13]); bcm43xx_phy_write(bcm, 0x0814, regstack[14]); bcm43xx_phy_write(bcm, 0x0815, regstack[15]); bcm43xx_phy_write(bcm, BCM43xx_PHY_G_CRS, regstack[0]); bcm43xx_phy_write(bcm, 0x0802, regstack[1]); } bcm43xx_radio_selectchannel(bcm, oldchannel, 1);#ifdef CONFIG_BCM43XX_DEBUG { /* Sanity check for all lopairs. */ for (i = 0; i < BCM43xx_LO_COUNT; i++) { tmp_control = phy->_lo_pairs + i; if (tmp_control->low < -8 || tmp_control->low > 8 || tmp_control->high < -8 || tmp_control->high > 8) { printk(KERN_WARNING PFX "WARNING: Invalid LOpair (low: %d, high: %d, index: %d)\n", tmp_control->low, tmp_control->high, i); } } }#endif /* CONFIG_BCM43XX_DEBUG */}staticvoid bcm43xx_phy_lo_mark_current_used(struct bcm43xx_private *bcm){ struct bcm43xx_lopair *pair; pair = bcm43xx_current_lopair(bcm); pair->used = 1;}void bcm43xx_phy_lo_mark_all_unused(struct bcm43xx_private *bcm){ struct bcm43xx_phyinfo *phy = bcm->current_core->phy; struct bcm43xx_lopair *pair; int i; for (i = 0; i < BCM43xx_LO_COUNT; i++) { pair = phy->_lo_pairs + i; pair->used = 0; }}/* http://bcm-specs.sipsolutions.net/EstimatePowerOut * This function converts a TSSI value to dBm in Q5.2 */static s8 bcm43xx_phy_estimate_power_out(struct bcm43xx_private *bcm, s8 tssi){ struct bcm43xx_phyinfo *phy = bcm->current_core->phy; s8 dbm = 0; s32 tmp; tmp = phy->idle_tssi; tmp += tssi; tmp -= phy->savedpctlreg; switch (phy->type) { case BCM43xx_PHYTYPE_A: tmp += 0x80; tmp = limit_value(tmp, 0x00, 0xFF); dbm = phy->tssi2dbm[tmp]; TODO(); //TODO: There's a FIXME on the specs break; case BCM43xx_PHYTYPE_B: case BCM43xx_PHYTYPE_G: tmp = limit_value(tmp, 0x00, 0x3F); dbm = phy->tssi2dbm[tmp]; break; default: assert(0); } return dbm;}/* http://bcm-specs.sipsolutions.net/RecalculateTransmissionPower */void bcm43xx_phy_xmitpower(struct bcm43xx_private *bcm){
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -