📄 main_svc_nu.m
字号:
% 支持向量机Matlab工具箱1.0 - Nu-SVC, Nu二类分类算法
% 使用平台 - Matlab6.5
% 版权所有:陆振波,海军工程大学
% 电子邮件:luzhenbo@yahoo.com.cn
% 个人主页:http://luzhenbo.88uu.com.cn
% 参数文献:Chih-Chung Chang, Chih-Jen Lin. "LIBSVM: a Library for Support Vector Machines"
%
% Support Vector Machine Matlab Toolbox 1.0 - Nu Support Vector Classification
% Platform : Matlab6.5 / Matlab7.0
% Copyright : LU Zhen-bo, Navy Engineering University, WuHan, HuBei, P.R.China, 430033
% E-mail : luzhenbo@yahoo.com.cn
% Homepage : http://luzhenbo.88uu.com.cn
% Reference : Chih-Chung Chang, Chih-Jen Lin. "LIBSVM: a Library for Support Vector Machines"
%
% Solve the quadratic programming problem - "quadprog.m"
clc
clear
close all
% ------------------------------------------------------------%
% 定义核函数及相关参数
nu = 0.2; % nu -> (0,1] 在支持向量数与错分样本数之间进行折衷
ker = struct('type','linear');
%ker = struct('type','ploy','degree',3,'offset',1);
%ker = struct('type','gauss','width',1);
%ker = struct('type','tanh','gamma',1,'offset',0);
% ker - 核参数(结构体变量)
% the following fields:
% type - linear : k(x,y) = x'*y
% poly : k(x,y) = (x'*y+c)^d
% gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2)
% tanh : k(x,y) = tanh(g*x'*y+c)
% degree - Degree d of polynomial kernel (positive scalar).
% offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh).
% width - Width s of Gauss kernel (positive scalar).
% gamma - Slope g of the tanh kernel (positive scalar).
% ------------------------------------------------------------%
% 构造两类训练样本
n = 50;
randn('state',6);
x1 = randn(2,n);
y1 = ones(1,n);
x2 = 5+randn(2,n);
y2 = -ones(1,n);
figure;
plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.');
axis([-3 8 -3 8]);
title('C-SVC')
hold on;
X = [x1,x2]; % 训练样本,d×n的矩阵,n为样本个数,d为样本维数
Y = [y1,y2]; % 训练目标,1×n的矩阵,n为样本个数,值为+1或-1
% ------------------------------------------------------------%
% 训练支持向量机
tic
svm = svmTrain('svc_nu',X,Y,ker,nu);
t_train = toc
% svm 支持向量机(结构体变量)
% the following fields:
% type - 支持向量机类型 {'svc_c','svc_nu','svm_one_class','svr_epsilon','svr_nu'}
% ker - 核参数
% x - 训练样本,d×n的矩阵,n为样本个数,d为样本维数
% y - 训练目标,1×n的矩阵,n为样本个数,值为+1或-1
% a - 拉格朗日乘子,1×n的矩阵
% ------------------------------------------------------------%
% 寻找支持向量
a = svm.a;
epsilon = 1e-8; % 如果小于此值则认为是0
i_sv = find(abs(a)>epsilon); % 支持向量下标
plot(X(1,i_sv),X(2,i_sv),'ro');
% ------------------------------------------------------------%
% 测试输出
[x1,x2] = meshgrid(-2:0.1:7,-2:0.1:7);
[rows,cols] = size(x1);
nt = rows*cols; % 测试样本数
Xt = [reshape(x1,1,nt);reshape(x2,1,nt)];
tic
Yd = svmSim(svm,Xt); % 测试输出
t_sim = toc
Yd = reshape(Yd,rows,cols);
contour(x1,x2,Yd,[0 0],'m'); % 分类面
hold off;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -