⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 meancovariance.cpp

📁 模糊聚類分析源碼。包含教學文件
💻 CPP
字号:
/*    Context       : Fuzzy Clustering Algorithms  Author        : Frank Hoeppner, see also AUTHORS file   Description   : implementation of class module MeanCovariance                    History       :      Comment       :     This file was generated automatically. DO NOT EDIT.  Copyright     : Copyright (C) 1999-2000 Frank Hoeppner    This program is free software; you can redistribute it and/or modify    it under the terms of the GNU General Public License as published by    the Free Software Foundation; either version 2 of the License, or    (at your option) any later version.    This program is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the    GNU General Public License for more details.    You should have received a copy of the GNU General Public License    along with this program; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA*//*  The University of Applied Sciences Oldenburg/Ostfriesland/Wilhelmshaven  hereby disclaims all copyright interests in the program package `fc'   (tool package for fuzzy cluster analysis) written by Frank Hoeppner.    Prof. Haass, President of Vice, 2000-Mar-10*/#ifndef MeanCovariance_SOURCE#define MeanCovariance_SOURCE/* configuration include */#ifdef HAVE_CONFIG_H/*//FILETREE_IFDEF HAVE_CONFIG_H*/#include "config.h"/*//FILETREE_ENDIF*/#endif// necessary includes#include "MeanCovariance.hpp"#include "TransMatrix.hpp"// data#define COV_EPSILON 1E-12// implementationtemplate < class ANALYSIS >MeanCovariance< ANALYSIS >::MeanCovariance  (  Algorithm<ANALYSIS> *ap_alg  )  : mp_succ_alg(ap_alg)      {    }template < class ANALYSIS >MeanCovariance< ANALYSIS >::~MeanCovariance  (  )  {  FUNCLOG("~MeanCovariance");    delete mp_succ_alg;  }template < class ANALYSIS >voidMeanCovariance< ANALYSIS >::operator()  (  ANALYSIS& a_analysis  )  {  FUNCLOG("MeanCovariance");    for (      typename ANALYSIS::prot_iter i_prot(a_analysis.prototypes().begin());      i_prot != a_analysis.prototypes().end();      ++i_prot      )    {    matrix_set_scalar( (*i_prot).covmatrix(), 0);    }   static tuple_type diff;  diff.adjust(a_analysis.option().data_dimension());  typename ANALYSIS::link_iter i_link(a_analysis.links().begin());  for (      typename ANALYSIS::data_iter i_data(a_analysis.data().begin());      i_data != a_analysis.data().end();      ++i_data      )    {    for (        typename ANALYSIS::prot_iter i_prot(a_analysis.prototypes().begin());        i_prot != a_analysis.prototypes().end();        ++i_prot        )      {      const real_type u ( (*i_link).pow_membxweight() );      if (u!=0) // non-zero membership and weight        {        matrix_set_diff(diff,(*i_data).datum(),(*i_prot).center());        matrix_inc_scaled_product((*i_prot).covmatrix(),u,           diff,transposed(diff));        }      ++i_link;      }    }  for (      typename ANALYSIS::prot_iter i_prot(a_analysis.prototypes().begin());      i_prot != a_analysis.prototypes().end();      ++i_prot      )    {    matrix_scale(       (*i_prot).covmatrix(), 1.0/(*i_prot).total_pow_membxweight() );     (*i_prot).covdet() = matrix_det( (*i_prot).covmatrix() );    if ((*i_prot).covdet()<0)      {      if (fabs((*i_prot).covdet()) < COV_EPSILON)         { // negative due to rounding errors        (*i_prot).covdet() = -(*i_prot).covdet();        }      else        warning("determinant of covariance matrix negative",SOURCELOC);      }    for (int i=0;i<(*i_prot).covmatrix().rows();++i)      {      if (fabs((*i_prot).covmatrix()(i,i)) < COV_EPSILON)        { (*i_prot).covmatrix()(i,i) = COV_EPSILON; }      }    }   (*mp_succ_alg)(a_analysis);    }// template instantiation#endif // MeanCovariance_SOURCE

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -